Skip to main content
Log in

MPC-based path tracking with PID speed control for high-speed autonomous vehicles considering time-optimal travel

基于 MPC 的考虑时间最优速度的高速无人驾驶车辆路径跟踪和 PID 速度控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to track the desired path as fast as possible, a novel autonomous vehicle path tracking based on model predictive control (MPC) and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits, in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit. Moreover, this scheme was further extended along one moving prediction window. In the MPC controller, the prediction model was an 8-degree-of-freedom (DOF) vehicle model, while the plant was a 14-DOF vehicle model. For lateral control, a sequence of optimal wheel steering angles was generated from the MPC controller; for longitudinal control, the total wheel torque was generated from the PID speed controller embedded in the MPC framework. The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory. The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller. Additionally, the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.

摘要

为了尽可能快地跟踪期望路径, 提出一种新的基于模型预测控制(MPC)和 PID 速度控制方法, 考虑高速无人驾驶车辆的物理约束, 通过前向后向积分策略生成轮胎路面附着极限内的时间最优速度曲线, 并将该方法进一步扩展应用于单个滚动预测窗口中. 在 MPC 算法框架的设计中, 以 8 自由度车辆模型作为预测模型, 以高置信度的 14 自由度车辆模型作为被控对象, 对于横向控制, 通过 MPC 控制器生成最优的前轮转角, 对于纵向控制, 通过嵌入模型预测控制优化求解中的 PID 控制器生成总的车辆驱动/制动力矩. 以任意连续变化曲率的路径为参考轨迹, 在 MATLAB 中实现所提出的控制器, 仿真结果表明车辆的横向位置和纵向位置的跟踪误差较小, 通过车轮转角、 车轮驱动/制动力矩的联合控制, 车辆的轨迹跟踪和速度跟踪性能良好. 另外, 将最优速度曲线生成方法进一步扩展应用于单个滚动预测窗口中, 其所需路径跟踪的时间比在整个路径上应用该策略时需要的时间短.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Chang, LEE S, VARNHAGEN S, TSENG H E. Path planning for autonomous vehicles using model predictive control [C]// IEEE Intelligent Vehicles Symposium. IEEE, 2017: 174–179. DOI: https://doi.org/10.1109/IVS.2017.7995716.

  2. YURTSEVER E, LAMBERT J, CARBALLO A, TAKEDA K. A survey of autonomous driving: Common practices and emerging technologies [J]. IEEE Access, 2020, 8: 58443–58469. DOI: https://doi.org/10.1109/ACCESS.2020.2983149.

    Google Scholar 

  3. BROWN M, FUNKE J, ERLIEN S, GERDES J C. Safe driving envelopes for path tracking in autonomous vehicles [J]. Control Engineering Practice, 2017, 61: 307–316. DOI: https://doi.org/10.1016/j.conengprac.2016.04.013.

    Google Scholar 

  4. CUI Qing-jia, DING Rong-jun, WEI Chong-feng, ZHOU Bing. Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope [J]. Vehicle System Dynamics, 2020: 1–25. DOI: https://doi.org/10.1080/00423114.2020.1776344

  5. HWANG J Y, KIM J S, LIM S S, PARK K H. A fast path planning by path graph optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2003, 33(1): 121–128. DOI: https://doi.org/10.1109/TSMCA.2003.812599

    Google Scholar 

  6. LIKHACHEV M, FERGUSON D, GORDON G, STENTZ A, THRUN S. Anytime search in dynamic graphs [J]. Artificial Intelligence, 2008, 172: 1613–1643. DOI: https://doi.org/10.1016/j.artint.2007.11.009.

    MathSciNet  MATH  Google Scholar 

  7. DOLGOV D, THRUN S, MONTEMERLO M, DIEBEL J. Path planning for autonomous vehicles in unknown semi-structured environments [J]. International Journal of Robotics Research, 2010, 29(5): 485–501. DOI: https://doi.org/10.1177/0278364909359210.

    Google Scholar 

  8. PIVTORAIKO M, KNEPPER R A, KELLY A. Differentially constrained mobile robot motion planning in state lattices [J]. Journal of Field Robotics, 2009, 26(3): 308–333. DOI: https://doi.org/10.1002/rob.20285.

    Google Scholar 

  9. KAVRAKI L E, KOLOUNTZAKIS M N, LATOMBE J C. Analysis of probabilistic roadmaps for path planning [J]. IEEE Transactions on Robotics and Automation, 1998, 14(1): 166–171. DOI: https://doi.org/10.1109/70.660866.

    Google Scholar 

  10. LAVALLE S M, KUFFNER J J. Randomized kinodynamic planning [J]. The International Journal of Robotics Research, 2001, 20(5): 378–400. DOI: https://doi.org/10.1177/02783640122067453.

    Google Scholar 

  11. ZIEGLER J, BENDER P, DANG T, STILLER C. Trajectory planning for bertha-a local, continuous method [C]// 2014 IEEE Intelligent Vehicles Symposium Proceedings. IEEE, 2014: 450–457. DOI: https://doi.org/10.1109/IVS.2014.6856581.

  12. GONZÁLEZ D, PÉREZ J, MILANÉS V, NASHASHIBI F. A review of motion planning techniques for automated vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1135–1145. DOI: https://doi.org/10.1109/TITS.2015.2498841.

    Google Scholar 

  13. HUANG Yan-jun, WANG Hong, KHAJEPOUR A, DING Hai-tao, YUAN Kang, QIN Ye-chen. A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control [J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 55–66. DOI: https://doi.org/10.1109/TVT.2019.2945934.

    Google Scholar 

  14. BEAL C E, GERDES J C. Model predictive control for vehicle stabilization at the limits of handling [J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1258–1269. DOI: https://doi.org/10.1109/TCST.2012.2200826.

    Google Scholar 

  15. MARINO R, SCALZI S, NETTO M. Nested PID steering control for lane keeping in autonomous vehicles [J]. Control Engineering Practice, 2011, 19: 1459–1467. DOI: https://doi.org/10.1016/j.conengprac.2011.08.005.

    Google Scholar 

  16. WANG Shu-ti, YIN Xun-he, LI Peng, ZHANG Ming-zhi, WANG Xin. Trajectory tracking control for mobile robots using reinforcement learning and PID [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44(3): 1059–1068. DOI: https://doi.org/10.1007/s40998-019-00286-4.

    Google Scholar 

  17. HU Chuan, WANG Rong-rong, YAN Feng-jun, CHEN Nan. Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles [J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4033–4043. DOI: https://doi.org/10.1109/TVT.2015.2472975.

    Google Scholar 

  18. LEE K, JEON S, KIM H, KUM D. Optimal path tracking control of autonomous vehicle: Adaptive full-state linear quadratic Gaussian (LQG) control [J]. IEEE Access, 2019, 7: 109120–109133. DOI: https://doi.org/10.1109/ACCESS.2019.2933895.

    Google Scholar 

  19. KANG C M, KIM W, CHUNG C C. Observer-based backstepping control method using reduced lateral dynamics for autonomous lane-keeping system [J]. ISA Transactions, 2018, 83: 214–226. DOI: https://doi.org/10.1016/j.isatra.2018.09.016.

    Google Scholar 

  20. NOROUZI A, MASOUMI M, BARARI A, SANI S F. Lateral control of an autonomous vehicle using integrated backstepping and sliding mode controller [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233(1): 141–151. DOI: https://doi.org/10.1177/1464419318797051.

    Google Scholar 

  21. GONG Jian-wei, XU Wei, JIANG Yan, LIU Kai, GUO Hong-fen, SUN Yin-jian. Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking [J]. Journal of Beijing Institute of Technology, 2015, 24(4): 441–448. DOI: https://doi.org/10.15918/j.jbit1004-0579.201524.0403.

    Google Scholar 

  22. LIU Kai, GONG Jian-wei, KURT A, CHEN Hui-yan, OZGUNER U. Dynamic modeling and control of high-speed automated vehicles for lane change maneuver [J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 329–339. DOI: https://doi.org/10.1109/tiv.2018.2843177.

    Google Scholar 

  23. NAM H, CHOI W, AHN C. Model predictive control for evasive steering of an autonomous vehicle [J]. International Journal of Automotive Technology, 2019, 20(5): 1033–1042. DOI: https://doi.org/10.1007/s12239-019-0097-5.

    Google Scholar 

  24. LIU Kai, GONG Jian-wei, CHEN Shu-ping, ZHANG Yu, CHEN Hui-yan. Dynamic modeling analysis of optimal motion planning and control for high-speed self-driving vehicles [J]. Journal of Mechanical Engineering, 2018, 54(14): 141–151. DOI: https://doi.org/10.3901/JME.2018.14.141. (in Chinese)

    Google Scholar 

  25. FALCONE P, TSENG H E, BORRELLI F, ASGARI J, HROVAT D. MPC-based yaw and lateral stabilisation via active front steering and braking [J]. Vehicle System Dynamics, 2008, 46(Supplement): 611–628. DOI: https://doi.org/10.1080/00423110802018297.

    Google Scholar 

  26. MING Ting-you, DENG Wei-wen, ZHANG Su-min, ZHU Bing. MPC-based trajectory tracking control for intelligent vehicles [J]. SAE Technical Papers, 2016: 2016-01-0452. DOI: https://doi.org/10.4271/2016-01-0452.

  27. GUO Hong-yan, LIU Jun, CAO Dong-pu, CHEN Hong, YU Ru, LV Chen. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles [J]. Mechatronics, 2018, 50: 422–433. DOI: https://doi.org/10.1016/j.mechatronics.2017.02.001.

    Google Scholar 

  28. TANG Lu-qi, YAN Fu-wu, ZOU Bin, WANG Ke-wei, LV Chen. An improved kinematic model predictive control for high-speed path tracking of autonomous vehicles [J]. IEEE Access, 2020, 8: 51400–51413. DOI: https://doi.org/10.1109/ACCESS.2020.2980188.

    Google Scholar 

  29. ATTIA R, ORJUELA R, BASSET M. Combined longitudinal and lateral control for automated vehicle guidance [J]. Vehicle System Dynamics, 2014, 52(2): 261–279. DOI: https://doi.org/10.1080/00423114.2013.874563.

    Google Scholar 

  30. LIN Fen, ZHANG Yao-wen, ZHAO You-qun, YIN Guo-dong, ZHANG Hui-qi, WANG Kai-zheng. Trajectory tracking of autonomous vehicle with the fusion of DYC and longitudinal-lateral control [J]. Chinese Journal of Mechanical Engineering, 2019, 32: 1–16. DOI: https://doi.org/10.1186/s10033-019-0327-9.

    Google Scholar 

  31. LIPP T, BOYD S. Minimum-time speed optimisation over a fixed path [J]. International Journal of Control, 2014, 87(6): 1297–1311. DOI: https://doi.org/10.1080/00207179.2013.875224.

    MathSciNet  MATH  Google Scholar 

  32. ALCALÁ E, PUIG V, QUEVEDO J, ROSOLIA U. Autonomous racing using linear parameter varying-model predictive control (LPV-MPC) [J]. Control Engineering Practice, 2020, 95: 104270. DOI: https://doi.org/10.1016/j.conengprac.2019.104270.

    Google Scholar 

  33. BOBROW J E, DUBOWSKY S, GIBSON J S. Time-optimal control of robotic manipulators along specified paths [J]. The International Journal of Robotics Research, 1985, 4(3): 3–17. DOI: https://doi.org/10.1177/027836498500400301.

    Google Scholar 

  34. VERSCHEURE D, DEMEULENAERE B, SWEVERS J, SCHUTTER J D, DIEHL M. Time-optimal path tracking for robots: A convex optimization approach [J]. IEEE Transactions on Automatic Control, 2009, 54(10): 2318–2327. DOI: https://doi.org/10.1109/TAC.2009.2028959.

    MathSciNet  MATH  Google Scholar 

  35. DINH Q T, DIEHL M. An application of sequential convex programming to time optimal trajectory planning for a car motion [C]// Proceedings of the IEEE Conference on Decision and Control. IEEE, 2009: 4366–4371. DOI: https://doi.org/10.1109/CDC.2009.5399823.

  36. FAULWASSER T, HAGENMEYER V, FINDEISEN R. Optimal exact path-following for constrained differentially flat systems[C]// Proceedings of the 18th IFAC World Congress. Elsevier, 2011: 9875–9880. DOI: https://doi.org/10.3182/20110828-6-IT-1002.03132.

  37. CASANOVA D, SHARP R S, SYMONDS P. Minimum time manoeuvring: The significance of yaw inertia [J]. Vehicle System Dynamics, 2000, 34: 77–115. DOI: https://doi.org/10.1076/0042-3114(200008)34:2;1-G;FT077.

    Google Scholar 

  38. VELENIS E, TSIOTRAS P. Minimum time vs maximum exit velocity path optimization during cornering [C]// IEEE International Symposium on Industrial Electronics. IEEE, 2005: 355–360. DOI: https://doi.org/10.1109/ISIE.2005.1528936

  39. HENDRIKX J P M, MEIJLINK T J J, KRIENS R F C. Application of optimal control theory to inverse simulation of car handling [J]. Vehicle System Dynamics, 1996, 26: 449–461. DOI: https://doi.org/10.1080/00423119608969319.

    Google Scholar 

  40. CASANOVA D. On minimum time vehicle manoeuvring: The theoretical optimal lap [D]. Cranfield: Cranfield University, 2000.

    Google Scholar 

  41. KELLY D P. Lap time simulation with transient vehicle and tyre dynamics [D]. Cranfield: Cranfield University, 2008.

    Google Scholar 

  42. THEODOSIS P A, GERDES J C. Generating a racing line for an autonomous racecar using professional driving techniques [C]// ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, ASME, 2012: 853–860. DOI: https://doi.org/10.1115/DSCC2011-6097.

  43. GERDTS M, KARRENBERG S, MÜLLER-BEßLER B, STOCK G. Generating locally optimal trajectories for an automatically driven car [J]. Optimization and Engineering, 2009, 10: 439–463. DOI: https://doi.org/10.1007/s11081-008-9047-1

    MATH  Google Scholar 

  44. TIMINGS J P, COLE D J. Minimum maneuver time calculation using convex optimization [J]. Journal of Dynamic Systems, Measurement and Control-Transactions of the ASME, 2013, 135(3): 031015. DOI: https://doi.org/10.1115/1.4023400.

    Google Scholar 

  45. PERANTONI G, LIMEBEER D J N. Optimal control for a Formula One car with variable parameters [J]. Vehicle System Dynamics, 2014, 52(5): 653–678. DOI: https://doi.org/10.1080/00423114.2014.889315.

    Google Scholar 

  46. KAPANIA N R, SUBOSITS J, GERDES J C. A sequential two-step algorithm for fast generation of vehicle racing trajectories [J]. Journal of Dynamic Systems, Measurement, and Control-Transactions of the ASME, 2016, 138(9): 091005. DOI: https://doi.org/10.1115/1.4033311.

    Google Scholar 

  47. SPENKO M, KURODA Y, DUBOWSKY S, IAGNEMMA K. Hazard avoidance for high-speed mobile robots in rough terrain [J]. Journal of Field Robotics, 2006, 23(5): 311–331. DOI: https://doi.org/10.1002/rob.20118.

    MATH  Google Scholar 

  48. HELLEWELL J S, POPOV A A, BURNETT G E. Hierarchical control for trajectory generation and tracking via active front steering [J]. Journal of Dynamic Systems, Measurement, and Control, 2020, 142: 011002. DOI: https://doi.org/10.1115/1.4044620.

    Google Scholar 

  49. XU Shao-bing, PENG Huei. Design, analysis, and experiments of preview path tracking control for autonomous vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 48–58. DOI: https://doi.org/10.1109/TITS.2019.2892926.

    Google Scholar 

  50. VELENIS E, TSIOTRAS P. Minimum-time travel for a vehicle with acceleration limits: Theoretical analysis and receding-horizon implementation [J]. Journal of Optimization Theory and Applications, 2008, 138: 275–296. DOI: https://doi.org/10.1007/s10957-008-9381-7.

    MathSciNet  MATH  Google Scholar 

  51. LEPETIČ M, KLANČAR G, ŠKRJANC I, MATKO D, POTOČNIK B. Time optimal path planning considering acceleration limits [J]. Robotics and Autonomous Systems, 2003, 45: 199–210. DOI: https://doi.org/10.1016/j.robot.2003.09.007.

    Google Scholar 

  52. KANT K, ZUCKER SW. Toward efficient trajectory planning: The path-velocity decomposition [J]. The International Journal of Robotics Research, 1986, 5(3): 72–89. DOI: https://doi.org/10.1177/027836498600500304.

    Google Scholar 

  53. BIANCO C G L, PIAZZI A, ROMANO M. Smooth motion generation for unicycle mobile robots via dynamic path inversion [J]. IEEE Transactions on Robotics, 2004, 20(5): 884–891. DOI: https://doi.org/10.1109/TRO.2004.832827.

    Google Scholar 

  54. LINI G, PIAZZI A, CONSOLINI L. Algebraic solution to minimum-time velocity planning [J]. International Journal of Control, Automation and Systems, 2013, 11(4): 805–814. DOI: https://doi.org/10.1007/s12555-011-0065-y.

    Google Scholar 

  55. CONSOLINI L, LOCATELLI M, MINARI A, PIAZZI A. An optimal complexity algorithm for minimum-time velocity planning [J]. Systems and Control Letters, 2017, 103: 50–57. DOI: https://doi.org/10.1016/j.sysconle.2017.02.001.

    MathSciNet  MATH  Google Scholar 

  56. CHEN Shu-ping, CHEN Hui-yan. MPC-based path tracking with PID speed control for autonomous vehicles [C]// IOP Conference Series: Materials Science and Engineering. IOP, 2020: 012034. DOI: https://doi.org/10.1088/1757-899X/892/1/012034.

  57. BORRELLI F, FALCONE P, KEVICZKY T, ASGARI J, HROVAT D. MPC-based approach to active steering for autonomous vehicle systems [J]. International Journal of Vehicle Autonomous Systems, 2005, 3: 265–291. DOI: https://doi.org/10.1504/IJVAS.2005.008237.

    Google Scholar 

  58. SHIM T, GHIKE C. Understanding the limitations of different vehicle models for roll dynamics studies [J]. Vehicle System Dynamics, 2007, 45(3): 191–216. DOI: https://doi.org/10.1080/00423110600882449.

    Google Scholar 

  59. HE Jun-jie, CROLLA D A, LEVESLEY M C, MANNING W J. Integrated active steering and variable torque distribution control for improving vehicle handling and stability [J]. SAE Technical Papers, 2004: 2004-01-1071. DOI: https://doi.org/10.4271/2004-01-1071.

  60. GAO Yi-qi, GRAY A, FRASCH J V, LIN T, TSENG E H, HEDRICK J K, BORRELLI F. Spatial predictive control for agile semi-autonomous ground vehicles [C]// Proceedings of the 11th International Symposium on Advanced Vehicle Control, 2012. https://borrelli.me.berkeley.edu/pdfpub/pub-1054.pdf.

  61. ZHANG Chao-yong, CHU Duan-feng, LIU Shi-dong, DENG Ze-jian, WU Chao-zhong. Trajectory planning and tracking for autonomous vehicle based on state lattice and model predictive control [J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(2): 29–40. DOI: https://doi.org/10.1109/MITS.2019.2903536.

    Google Scholar 

  62. GU Tian-yu, SNIDER J, DOLAN J M, LEE J W. Focused trajectory planning for autonomous on-road driving [C]//IEEE Intelligent Vehicles Symposium. IEEE, 2013: 547–552. DOI: https://doi.org/10.1109/IVS.2013.6629524.

  63. CAPORALE D, SETTIMI A, MASSA F, AMEROTTI F, CORTI A, FAGIOLINI A, GUIGGIANI M, BICCHI A, PALLOTTINO L. Towards the design of robotic drivers for full-scale self-driving racing cars [C]// IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2019: 5643–5649. DOI: https://doi.org/10.1109/ICRA.2019.8793882.

  64. MENG Yu, WU Yang-ming, GU Qing, LIU Li. A decoupled trajectory planning framework based on the integration of lattice searching and convex optimization [J]. IEEE Access, 2019, 7: 130530–130551. DOI: https://doi.org/10.1109/ACCESS.2019.2940271.

    Google Scholar 

  65. SUBOSITS J, GERDES J C. Autonomous vehicle control for emergency maneuvers: The effect of topography[C]// 2015 American Control Conference, IEEE, 2015: 1405–1410. DOI: https://doi.org/10.1109/ACC.2015.7170930.

  66. LI Sheng-bo, WANG Jian-qiang, LI Ke-qiang. Stabilization of linear predictive control systems with softening constraints [J]. Journal of Tsinghua University (Science & Technology), 2010, 50(11): 1848–1852. DOI: https://doi.org/10.16511/j.cnki.qhdxxb.2010.11.029. (in Chinese)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper is funded by International Graduate Exchange Program of Beijing Institute of Technology. The authors also gratefully thank the reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

CHEN Shu-ping wrote the original draft of the manuscript and conducted the creation of the models and simulation analysis. XIONG Guang-ming reviewed and edited the draft of the manuscript. CHEN Hui-yan supervised and leaded the research activity. NEGRUT Dan provided the concept and goals of the manuscript.

Corresponding author

Correspondence to Guang-ming Xiong  (熊光明).

Ethics declarations

CHEN Shu-ping, XIONG Guang-ming, CHEN Hui-yan and NEGRUT Dan declare that they have no conflict of interest.

Additional information

Foundation item: Project(20180608005600843855-19) supported by the International Graduate Exchange Program of Beijing Institute of Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sp., Xiong, Gm., Chen, Hy. et al. MPC-based path tracking with PID speed control for high-speed autonomous vehicles considering time-optimal travel. J. Cent. South Univ. 27, 3702–3720 (2020). https://doi.org/10.1007/s11771-020-4561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4561-1

Key words

关键词

Navigation