Skip to main content
Log in

Reduction behaviour of Odisha Sands Complex, India ilmenite-coke composite pellets

Odisha Sands Complex 公司复合钛铁矿-焦炭复合球团还原行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Presently, ilmenite concentrates from Odisha Sands Complex at Chhatrapur, India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace. However, the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects. A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication. In particular, studies have been undertaken on the reduction process of ilmenite-coke composite pellets. The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets. The effects of various processing parameters like temperature, residence time, and reductant percentage on the metallization of composite pellets in a static bed have been investigated. Metallization of about 90% has been achieved at 1250 °C for a reduction period of 360 min with a 4°% coke composition. Furthermore, the reduced pellets have been characterized through chemical analysis, optical microscopy, field emission scanning electron microscopy and X-ray diffraction analysis. The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.

摘要

目前, 印度 Chhatrapur 的 Odisha Sands Complex 公司通过在电弧炉中直接熔炼钛铁矿精矿来还原 TiO2 矿渣. 然而, 这一过程涉及到大量电能的消耗和由于泡沫效应而难以处理电弧炉的问题. 本文提出了一种更有效的在熔炼前预还原钛铁矿的工艺, 特别对钛铁矿-焦炭复合球团的还原过程进行了研究. 分析了原钛铁矿和钛铁矿-焦炭复合球团还原行为的差异, 并与预氧化的原球团的还原行为进 行了比较. 研究了温度、 还原时间、 还原剂用量等工艺参数对静态床上复合球团的金属化的影响. 在 1250 °C, 还原时间为 360 min, 焦炭含量为4%的条件下, 实现了约90%的金属化. 此外, 通过化学分析、 光学显微镜、 场发射扫描电子显微镜和 X 射线衍射分析对还原球团进行了表征. 结果表明复合球团的还原行为优于预氧化球团, 说明前者更有效.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI W B, YUAN Z F, XU C, PAN Y F, WANG X Q. Effect of temperature on carbothermic reduction of ilmenite [J]. Journal of Iron and Steel Research International, 2005, 12: 1–5.

    Google Scholar 

  2. WANG Yu-ming, YUAN Zhang-fu. Reductive kinetics of the reaction between a natural ilmenite and carbon [J]. International Journal of Mineral Processing, 2006, 81(3): 133–140.

    Google Scholar 

  3. HUANG Run, LIU Peng-sheng, YUE Yue-hui, ZHANG Jin-zhu. Vacuum carbothermic reduction of panzhihua ilmenite concentrate: A thermodynamic study [J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(3): 193–198.

    Google Scholar 

  4. MAHMOUD M H H, AFIFI A A I, IBRAHIM I A. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile [J]. Hydrometallurgy, 2004, 73(1): 99–109.

    Google Scholar 

  5. DANG Jie, ZHANG Guo-hua, CHOU Kuo-chih. Kinetics and mechanism of hydrogen reduction of ilmenite powders [J]. Journal of Alloys and Compounds, 2015, 619: 443–451.

    Google Scholar 

  6. LV Wei, LV Xue-ming, LV Xue-wei, XIANG Jun-yi, BAI Chen-guang, SONG Bing. Non-isothermal kinetic studies on the carbothermic reduction of Panzhihua ilmenite concentrate [J]. Mineral Processing and Extractive Metallurgy, 2018, 128(4): 1–9.

    Google Scholar 

  7. KUCUKKARAGOZ C S, ERIC R H. Solid state reduction of a natural ilmenite [J]. Minerals Engineering, 2006, 19(3): 334–337.

    Google Scholar 

  8. FRANCIS A A, EL-MIDANY A A. An assessment of the carbothermic reduction of ilmenite ore by statistical design [J]. Journal of Materials Processing Technology, 2008, 199(1): 279–286.

    Google Scholar 

  9. MUKHERJEE A, RAJE N, KRISHNAMURTHY N. Effect of carbon on the beneficiation of OSCOM ilmenite by carbonitrothermy [J]. Thermochimica Acta, 2014, 575: 206–211.

    Google Scholar 

  10. ZHANG Guang-qing, OSTROVSKI O. Effect of preoxidation and sintering on properties of ilmenite concentrates [J]. International Journal of Mineral Processing, 2002, 64(4): 201–218.

    Google Scholar 

  11. GOU Hai-peng, ZHANG Guo-hua, CHOU Kuo-chih. Influence of pre-oxidation on carbothermic reduction process of ilmenite concentrate [J]. ISIJ International, 2015, 55(5): 928–933.

    Google Scholar 

  12. KELLY R M, ROWSON N A. Microwave reduction of oxidised ilmenite concentrates [J]. Minerals Engineering, 1995, 8(11): 1427–1438.

    Google Scholar 

  13. LIAO Xue-feng, PENG Jin-hui, ZHANG Li-bo, HU Tu, LI Jie. Enhanced carbothermic reduction of ilmenite placer by additional ferrosilicon [J]. Journal of Alloys and Compounds, 2017, 708: 1110–1116.

    Google Scholar 

  14. GUO Sheng-hui, CHEN Guo, PENG Jin-hui, CHEN Jin, LI Dong-bo, LIU Li-jun. Microwave assisted grinding of ilmenite ore [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 2122–2126.

    Google Scholar 

  15. CHEN Min, TANG Ai-tao, XIAO Xuan. Effect of milling time on carbothermic reduction of ilmenite [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4201–4206.

    Google Scholar 

  16. LEI Ying, LI Yu, PENG Jin-hui, GUO Sheng-hui, LI Wei, ZHANG Li-bo, WAN Run-dong. Carbothermic reduction of panzhihua oxidized ilmenite in a microwave field [J]. ISIJ International, 2011, 51(3): 337–343.

    Google Scholar 

  17. YUUKI M, MEGUMI N, NAOTO T, TOMOHIRO A. Reduction behavior and crushing strength of carbon-containing pellet prepared from COG tar [J]. Fuel Processing Technology, 2016, 142: 287–295.

    Google Scholar 

  18. HUANG Zhu-cheng, ZHONG Rong-hai, YI Ling-yun, JIANG Tao, WEN Liang-ming, LIANG Zhi-kai. Reduction enhancement mechanisms of a low-grade iron ore-coal composite by NaCl [J]. Metallurgical and Materials Transactions B, 2018, 49(1): 411–422.

    Google Scholar 

  19. NIKAI I, GARBERS-CRAIG A M. Use of iron ore fines in cold-bonded self-reducing composite pellets [J]. Mineral Processing and Extractive Metallurgy Review, 2016, 37(1): 42–48.

    Google Scholar 

  20. SAH R, DUTTA S K. Kinetic studies of iron ore-coal composite pellet reduction by TG-DTA [J]. Transactions of the Indian Institute of Metals, 2011, 64(6): 583–591.

    Google Scholar 

  21. MANTOVANI M C, TAKANO C, BUCHLER P M. Electric arc furnace dust-coal composite pellet: Effects of pellet size, dust composition, and additives on swelling and zinc removal [J]. Ironmaking and Steelmaking, 2002, 29(4): 257–265.

    Google Scholar 

  22. YOSHITAKA S, TETSUYA Y, KANJI T, HIROSHI I. New coal-based process to produce high quality DRI for the EAF [J]. ISIJ International, 2001, 41(Suppl): S17–S21.

    Google Scholar 

  23. MATHEISON J G, SOMERVILLE M A, DEEV A, JAHANSHAHI S. 19-Utilization of biomass as an alternative fuel in ironmaking [M]// Iron Ore. UK: Woodhead Publishing, 2015: 581–613.

    Google Scholar 

  24. LU W K. The search for an economical and environmentally friendly ironmaking process [J]. Metallurgical and Materials Transactions B, 2001, 32(5): 757–762.

    Google Scholar 

  25. EISELE T C, KAWATRA S K. A review of binders in iron ore pelletization [J]. Mineral Processing and Extractive Metallurgy Review, 2003, 24(1): 1–90.

    Google Scholar 

  26. CHIZHIKOVA V M, VAINSHTEIN R M, ZORIN S N, ZAINETDINOV T I, ZINYAGIN G A, SHEVCHENKO A A. Production of iron-ore pellets with an organic binder [J]. Metallurgist, 2003, 47(3): 141–146.

    Google Scholar 

  27. de MORAES S L, KAWATRA S K. Laboratory study of an organic binder for pelletization of a magnetite concentrate [J]. Mining, Metallurgy & Exploration, 2010, 27(3): 148–153.

    Google Scholar 

  28. AMMASI A, PAL J. Replacement of bentonite in hematite ore pelletisation using a combination of sodium lignosulphonate and copper smelting slag [J]. Ironmaking & Steelmaking, 2016, 43(3): 203–213.

    Google Scholar 

  29. EL-HUSSINY N A, SHALABI M E H. Studying the pelletization of rosseta ilmenite concentrate with coke breeze using molasses and reduction kinetics of produced pellets at 800–1150 °C [J]. Science of Sintering, 2012, 44(1): 113–126.

    Google Scholar 

  30. DEWAN M A R, ZHANG Guang-qing, OSTROVSKI O. Phase development in carbothermal reduction of ilmenite concentrates and synthetic rutile [J]. ISIJ International, 2010, 50(5): 647–653.

    Google Scholar 

  31. ZHANG Jian-liang, ZHENG Chang-le, TANG Yun-teng, CHAI Yi-fan. Reduction of Panzhihua titanium-bearing oxidized pellets by CO-N2-H2 gas [J]. Journal of Central South University, 2016, 23(5): 1015–1022.

    Google Scholar 

  32. LV Wei, BAI Chen-guang, LV Xue-wei, HU Kai, LV Xue-ming, XIANG Jun-yi, SONG Bing. Carbothermic reduction of ilmenite concentrate in semi-molten state by adding sodium sulfate [J]. Powder Technology, 2018, 340: 354–361.

    Google Scholar 

  33. AGRAWAL B B, PRASAD K K, SARKAR S B, RAY H S. Cold bonded ore-coal composite pellets for sponge ironmaking. Part 1. Laboratory scale development [J]. Ironmaking & Steelmaking, 2000, 27(6): 421–425.

    Google Scholar 

  34. RAMDOHR P. The ore minerals and their intergrowths [M]. Germany: Pergamon Press, 1969.

    Google Scholar 

  35. AHMED H M, VISWANATHAN N, BJORKMAN B. Composite pellets-A potential raw material for iron-making [J]. Steel Research International, 2014, 85(3): 293–306.

    Google Scholar 

  36. SHE X F, SUN H Y, DONG X J, XUE Q G, WANG J S. Reduction mechanism of titanomagnetite concentrate by carbon monoxide [J]. Journal of Mining and Metallurgy B: Metallurgy, 2013, 49(3): 263–270.

    Google Scholar 

  37. HU Tu, LV Xue-wei, BAI Chen-guang, LUN Zhi-gang, QIU Gui-bao. Reduction behavior of panzhihua titanomagnetite concentrates with coal [J]. Metallurgical and Materials Transactions B, 2013, 44(2): 252–260.

    Google Scholar 

  38. GUPTA S K, RAJAKUMAR V, GRIEVESON P. The influence of weathering on the reduction of llmenite with carbon [J]. Metallurgical Transactions B, 1989, 20(5): 735–745.

    Google Scholar 

  39. KHATTOI S C, ROY G G. Reduction efficiency of iron ore-coal composite pellets in tunnel kiln for sponge iron production [J]. Transactions of the Indian Institute of Metals, 2015, 68(5): 683–692.

    Google Scholar 

  40. CHOWDHURY G M, MURMU C S, ROY S K, ROY G G. Some studies to establish the reaction mechanism for the reduction of iron ore-graphite composite pellets in a packed bed reactor [J]. Steel Research International, 2010, 81(11): 925–931.

    Google Scholar 

  41. YANG Jian, MORI T, KUWABARA M. Mechanism of carbothermic reduction of hematite in hematite-carbon composite pellets [J]. ISIJ International, 2007, 47(10): 1394–1400.

    Google Scholar 

  42. SUN K, LU W K. Mathematical modeling of the kinetics of carbothermic reduction of iron oxides in ore-coal composite pellets [J]. Metallurgical and Materials Transactions B, 2009, 40(1): 91–103.

    MathSciNet  Google Scholar 

  43. COETSEE T, PISTORIUS P C, de VILLIERS E E. Rate-determining steps for reduction in magnetite-coal pellets [J]. Minerals Engineering, 2002, 15(11): 919–929.

    Google Scholar 

  44. WANG Zhen-yang, ZHANG Jian-liang, JIAO Ke-xin, LIU Zheng-jian, BARATI M. Effect of pre-oxidation on the kinetics of reduction of ironsand [J]. Journal of Alloys and Compounds, 2017, 729: 874–883.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the OSCOM for providing the ilmenite concentrate sample and to Professor Suddhasatwa BASU, the Director of CSIR-Institute of Minerals and Materials Technology for his consent to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nayak.

Additional information

Foundation item: Project(MLP-52) supported by the Council of Scientific and Industrial Research (CSIR), India

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, D., Ray, N., Dash, N. et al. Reduction behaviour of Odisha Sands Complex, India ilmenite-coke composite pellets. J. Cent. South Univ. 27, 1678–1690 (2020). https://doi.org/10.1007/s11771-020-4399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4399-6

Key words

关键词

Navigation