Skip to main content
Log in

Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators

  • Mechanical Engineering, Control Science and Information Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN I M, YEO S H, CHEN G. Kernal for modular robot applications-automatic modeling techniques [J]. International Journal of Robotics Research, 1999, 18(2): 225–242.

    Article  Google Scholar 

  2. YOO S S, RAMA S, SZEWCZYK B, PUI J W Y, LEE W, KIM L. Endoscopic capsule robots using reconfigurable modular assembly: A pilot study [J]. International Journal of Imaging System and Technology, 2014, 24(4): 359–365.

    Article  Google Scholar 

  3. YIM M, SHEN W M, SALEMI B, RUS D, MOLL M, LIPSON H, KLAVINS E, CHIRIKJIAN G S. Modular self-reconfigurable robot systems: challenges and opportunities for the future [J]. IEEE Robotic Automation Magazine, 2007, 14(1): 43–52.

    Article  Google Scholar 

  4. HARADA K, OETOMO D, SUSILO E, MENCIASSI A, DANEY D, MERLET J P, DARIO P. A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results [J]. Robotica, 2010, 28(2): 171–183.

    Article  Google Scholar 

  5. QIAO Gui-fang, SONG Guang-ming, WANG Ya-li, ZHANG Jun, WANG Wei-guo. Autonomous network repairing of a home security system using modular self-reconfigurable robots [J]. IEEE Transactions on Consumer Electronics, 2013, 59(3): 562–570.

    Article  Google Scholar 

  6. RUSSO S, HARADA K, RANZANI T, MANFREDI L, STEFANINI C, MENCIASSI A, DARIO P. Design of a robotic module for autonomous exploration and multimode locomotion [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(6): 1757–1766.

    Article  Google Scholar 

  7. ROEHR T M, CORDES F, KIRCHNER F. Reconfigurable integrated multi-robot exploration system: Heterogeneous modular reconfigurable robots for space exploration [J]. Journal of Field Robotics, 2014, 31(1): 3–34.

    Article  Google Scholar 

  8. DAS A N, MURTHY R, POPA D O, STEPHANOU H E. A multiscale assembly and packing system for manufacturing of complex micro-nano devices [J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(1): 160–170.

    Article  Google Scholar 

  9. VONASEK V, SASKA M, WINKLER L, PREUCIL L. High-level motion planning for CPG-driven modular robots [J]. Robotics and Autonomous Systems, 2015, 68(10): 116–128.

    Article  Google Scholar 

  10. LIU Guang-jun, ABDUL S, GOLDENBERG A A. Distributed control of modular and reconfigurable robot with torque sensing [J]. Robotica, 2008, 26(1): 75–84.

    Article  Google Scholar 

  11. BIGLARBEGIAN M, MELEK WW, MENDEL J M. Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments [J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1371–1384.

    Article  Google Scholar 

  12. KASPRZAK W, SZYNKIEWICZ W, ZLATANOV D, ZIELINSKA T. A hierarchical CSP search for path planning of cooperating self-reconfigurable mobile fixtures [J]. Engineering Applications of Artificial Intelligence, 2014, 34(9): 85–98.

    Article  Google Scholar 

  13. LI Z, MELEK W W, CLARK C. Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms [J]. Robotica, 2009, 27(2): 291–302.

    Article  Google Scholar 

  14. ZHU Ming-chao, LI Yuan-chun. Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators [J]. International Journal of Robust and Nonlinear Control, 2010, 20(4): 472–488.

    MathSciNet  MATH  Google Scholar 

  15. LEITAO P, BARBOSA J, TRENTESAUX D. Bio-inspired multiagent systems for reconfigurable manufacturing systems [J]. Engineering Applications of Artificial Intelligence, 2012, 25(5): 934–944.

    Article  Google Scholar 

  16. GARCIA-RODRIGUEZ R, PARRA-VEGA V. Decentralized sliding force/position PD control of cooperative robots in operational space under Jacobian uncertainty [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 3200–3206.

    Google Scholar 

  17. GUEAIEB W, KARRAY F, AL-SHARHAN S. A robust hybrid intelligent position/force control scheme for cooperative manipulators [J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 109–125.

    Article  Google Scholar 

  18. SADATI N, GHAFFARKHAH A. Decentralized position and force control of nonredundant multi-manipulator systems [C]// International Conference on Control, Automation and Systems. Seoul, Korea, 2007: 2223–2229.

    Google Scholar 

  19. HARUHISA K, SATOSHI U, SATOSHI I. Decentralized adaptive coordinated control of multiple robot arms without using a force sensor [J]. Automatica, 2006, 42(3): 481–488.

    Article  MathSciNet  MATH  Google Scholar 

  20. REZAEE H, ABDOLLAHI F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots [J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 347–354.

    Article  Google Scholar 

  21. WAIL G, FAKHREDDINE K, SALAH A. A robust hybrid intelligent position/force control scheme for cooperative manipulators [J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 109–125.

    Article  Google Scholar 

  22. ZHAO Bo, LI Yuan-chun. Local joint information based active fault tolerant control for reconfigurable manipulator [J]. Nonlinear Dynamics, 2014, 77(3): 859–876.

    Article  MathSciNet  MATH  Google Scholar 

  23. GRABBE M T, BRIDGES M M. Comments on “force/motion control of constrained robots using sliding mode” [J]. IEEE Transactions on Automatic Control, 1994, 39(1): 179.

    Article  MathSciNet  MATH  Google Scholar 

  24. ZHAO Bo, LI Yuan-chun. Signal reconstruction based active decentralized fault tolerant control for reconfigurable manipulators [J]. Acta Automatica Sinica, 2014, 40(9): 1942–1950. (in Chinese)

    Google Scholar 

  25. SU Chun-yi, LEUNG T P, ZHOU Qi-jie. Force/motion control of constrained robots using sliding mode [J]. IEEE Transactions on Automation Control, 1992, 37(5): 668–672.

    Article  MathSciNet  MATH  Google Scholar 

  26. DU Yan-li, LI Yuan-chun. Decentralized active fault-tolerant control for reconfigurable manipulator with simultaneous faults [J]. Journal of Central South University (Science and Technology), 2014, 45(3): 727–733. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhao  (赵博).

Additional information

Foundation item: Project(61374051, 61603387) supported by the National Natural Science Foundation of China; Projects(20150520112JH, 20160414033GH) supported by the Scientific and Technological Development Plan in Jilin Province of China; Project(20150102) supported by Opening Funding of State Key Laboratory of Management and Control for Complex Systems, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yc., Ding, Gb. & Zhao, B. Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators. J. Cent. South Univ. 23, 2917–2925 (2016). https://doi.org/10.1007/s11771-016-3355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3355-y

Keywords

Navigation