Skip to main content
Log in

Bitmap lattice index in road networks

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel technique called the bitmap lattice index (BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a server’s workload increases as the query request increases when a server sends a client information. To solve this problem, we propose the BLI. The BLI denotes an object and a node as 0 and 1 in the Hilbert curve (HC) map. The BLI can identify the position of a node and an object through bit information; it can also reduce the broadcasting frequency of a server by reducing the size of the index, thereby decreasing the access latency and query processing times. Moreover, the BLI is highly effective for data filtering, as it can identify the positions of both an object and a node. In a road network, if filtering is done via the Euclidean distance, it may result in an error. To prevent this, we add another validation procedure. The experiment is conducted by applying the BLI to kNN query, and the technique is assessed by a performance evaluation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ZHENG J, ZHU M, PAPADIAS D. Location-based spatial queries [C]// Proceeding of Special Interest Group on Management of Data. San Diego, California, USA, 2003: 443–454.

    Google Scholar 

  2. BELLAVISTA P, KUPPER A, HELAL S. Location-based services: Back to the future [J]. IEEE Pervasive Computing, 2008, 7(2): 85–89.

    Article  Google Scholar 

  3. RAO B, MINAKAKIS L. Evolution of mobile location-based services [J]. Communications of the ACM, 2003, 46(12): 61–65.

    Article  Google Scholar 

  4. PAPADIAS D, ZHANG J, MAMOULIS N, TAO Y. Query processing in spatial network databases [C]// Proceeding of Very Large Data Bases. Berlin, Germany, 2003: 802–813.

    Google Scholar 

  5. SAMET H, SANKARANARAYANAN J, ALBORZI H. Scalable network distance browsing in spatial databases [C]// Proceeding of Special Interest Group on Management of Data. Vancouver, BC, Canada, 2008: 43–54.

    Google Scholar 

  6. SANKARANARAYANAN J, ALBORZI H, SAMET H. Efficient query processing on spatial networks [C]// Proceeding of Geographic Information Systems. Bremen, Germany, 2005: 200–209.

    Google Scholar 

  7. IMIELINSKI T, VISWANATHAN S, BADRINATH B R. Energy efficient indexing on air [C]// Proceeding of Management of Data. Minnesota, USA, 1994: 25–36.

    Google Scholar 

  8. PARK K, CHOO H. Energy-efficient data dissemination schemes for nearest neighbor query processing [J]. IEEE Transactions on Computers, 2007, 56(6): 754–768.

    Article  MathSciNet  Google Scholar 

  9. CHEN M S, WU K L, YU P S. Optimizing index allocation for sequential data broadcasting in wireless mobile computing [J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(1): 161–173.

    Article  Google Scholar 

  10. ZHENG B, XU J, LEE W C, LEE L. Grid-partition index: A hybrid method for nearest-neighbor queries in wireless location-based services [J]. Very Large Data Bases Journal, 2006, 15(1): 21–39.

    Article  Google Scholar 

  11. LIN L F, CHEN C C, LEE C. Benefit-oriented data retrieval in data broadcast environments [J]. Wireless Networks, 2010, 16(1): 1–15.

    Article  MathSciNet  Google Scholar 

  12. MOURATIDIS K, BAKIRAS S, PAPADIAS D. Continuous monitoring of spatial queries in wireless broadcast environments [J]. IEEE Transactions on Mobile Computing, 2009, 8(10): 1297–1311.

    Article  Google Scholar 

  13. SONG D, PARK K. A Hierarchical bitmap-based spatial index for efficient spatial query processing on air [J]. KIIS Transaction on Internet and Information Systems, 2011, 12(6): 43–51.

    Google Scholar 

  14. ZHENG B, LEE W. C, LEE K C K, LEE D L, SHAO M. A distributed spatial index for error-prone wireless data broadcast [J]. Very Large Data Bases Journal, 2009, 18(4): 959–986.

    Article  Google Scholar 

  15. WANG Y, XU C, GU Y, CHEN M, YU G. Spatial query processing in road networks for wireless data broadcast [J]. Wireless Networks, 2013, 19(4): 477–494.

    Article  Google Scholar 

  16. KELLARIS G, MOURATIDIS K. Shortest path computation on air indexes [C]// Proceeding of Very Large Data Bases. Singapore, 2010: 747–757.

    Google Scholar 

  17. HU H, LEE D L, XU J. Fast nearest neighbor search on road networks [C]// Proceeding of Extending Database Technology. Munich, Germany, 2006: 186–203.

    Google Scholar 

  18. HU H, LEE D L, LEE V C S. Distance indexing on road networks [C]// Proceeding of Very Large Data Bases. Seoul, Korea, 2006: 894–905.

    Google Scholar 

  19. CHOI W, MOON B, LEE S. Adaptive cell-based index for moving objects [J]. Data & Knowledge Engineering, 2004, 48(1): 75–101.

    Article  Google Scholar 

  20. CHATZIMILIOUDIS G, ZEINALIPOUR-YAZTI D, LEE W C, DIKAIAKOS D M. Continuous all k-nearest neighbor querying in smart phone networks [C]// Proceeding of Mobile Data Management. Bengalura, Karnataka, 2012: 79–88.

    Google Scholar 

  21. LEE K C K, LEE W C, ZHENG B. Fast object search on road networks [C]// Proceeding of Extending Database Technology. Saint Petersburg, Russia, 2009: 1018–1029.

    Google Scholar 

  22. SHAHABI C, KOLAHDOUZAN M R, SHARIFZADEH M. A road network embedding technique for k-nearest neighbor search in moving object databases [C]// Proceeding of Geographic Information System. McLean, Virginia, USA, 2002: 94–100.

    Google Scholar 

  23. XIAO X, YAO B, LI F. Optimal location queries in road network databases [C]// Proceeding of International Conference on Data Engineering. Hannover, Germany, 2011: 804–815.

    Google Scholar 

  24. IWERKS G S, SMAET H, SMITH K. Continuous kNN queries for continuously moving points with updates [C]// Proceeding of Very Large Data Bases. Berlin, Germany, 2003: 512–523.

    Google Scholar 

  25. CHOW C Y, MOKBEL M F, LEONG H V. On Efficient and scalable support of continuous queries in mobile peer-to-peer environments [J]. IEEE Transactions on Mobile Computing, 2011, 10(10): 1473–1487.

    Article  Google Scholar 

  26. LEE K C K, LEE W C, ZHENG B, TIAN Y. ROAD: A new spatial object search framework for road networks [J]. IEEE Trans Knowledge and Data Engineering, 2012, 24(3): 547–567.

    Article  Google Scholar 

  27. DANIELSSON P E. Euclidean distance mapping [J]. Computer Graphics & Image Processing, 1980, 14(3): 227–248.

    Article  Google Scholar 

  28. GUTTMAN A. R-trees: A dynamic index structure for spatial searching [C]// Proceeding of Special Interest Group on Management of Data. Boston, Massachusetts, USA, 1984: 47–57.

    Google Scholar 

  29. IMIELINSKI T, VISWANATHAN S, BADRINATH B. Data on air: Organization and access [J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 9(3): 353–372.

    Article  Google Scholar 

  30. GOTSMAN C, LINDENBAUM M. On the metric properties of discrete space-filling curves [J]. IEEE Transactions on Image Processing, 1996, 5(5): 794–797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangjin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Lee, KH. & Park, K. Bitmap lattice index in road networks. J. Cent. South Univ. 21, 3856–3863 (2014). https://doi.org/10.1007/s11771-014-2372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2372-y

Key words

Navigation