Skip to main content
Log in

Seismic wavefield modeling in media with fluid-filled fractures and surface topography

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-flat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelo, D., and Petersson, N. A., 2009, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces: Commun. Comput. Phys., 5, 84–107.

    Google Scholar 

  • Campillo, M., and Bouchon, M., 1985, Synthetic SH seismograms in a laterally varying medium by the discrete wavenumber method: Geophys. J. R. Astr. Soc., 83, 307–317.

    Article  Google Scholar 

  • Coates, R. T., and Schoenberg, M., 1995, Finite-difference modeling of faults and fractures: Geophysics, 60, 1514–1526.

    Google Scholar 

  • Crampin, S., 1984, Effective anisotropic elastic constants for wave propagation through cracked solids: Geophys. J. Int., 76, 135–145.

    Article  Google Scholar 

  • Durand, S., Gaffet, S., and Virieux, J., 1999, Seismic diffracted waves from topography using 3-D discrete wavenumber-boundary integral equation simulation: Geophysics, 64, 572–578.

    Google Scholar 

  • Fornberg, B., 1988, The pseudo-spectral method: Accurate representation in elastic wave calculations: Geophysics, 53, 625–637.

    Google Scholar 

  • Gao, H., and Zhang, J., 2006, Parallel 3-D simulation of seismic wave propagation in heterogeneous anisotropic medium: a grid method approach: Geophys. J. Int., 165, 875–888.

    Article  Google Scholar 

  • Guan, X. Z., Fu, L. Y, Tao, Y., Yu, G. X., 2011, Boundaryvolume integral equation numerical modeling for complex near surface: Chinese J. Geophys. (in Chinese), 54(9), 2357–2367.

    Google Scholar 

  • Hestholm, S., and Ruud, B., 1994, 2-D finite-difference elastic wave modeling including surface topography: Geophys. Prosp., 42, 371–390.

    Article  Google Scholar 

  • Hsu, C. J., and Schoenberg, M., 1993, Elastic waves through a simulated fractured medium: Geophysics, 58, 964–977.

    Google Scholar 

  • Hudson, J. A., 1981, Wave speeds and attenuation of elastic waves in material containing cracks: Geophys. J. Int., 64, 133–150.

    Article  Google Scholar 

  • Hvid, S. L., 1994, Three dimensional algebraic grid generation: PhD Thesis, Technical University of Denmark.

  • Komatitsch, D., and Tromp, J., 2002, Spectral-element simulations of global seismic wave propagation-I. Validation: Geophys. J. Int., 149, 390–412.

    Article  Google Scholar 

  • Lan, H. Q., and Zhang, Z. J., 2011a, Three-dimensional wave-field simulation in heterogeneous transversely isotropic medium with irregular free surface: Bull. Seismol. Soc. Am., 101(3), 1354–1370.

    Article  Google Scholar 

  • —, 2011b, Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation: Journal of Geophysics and Engineering, 8, 275–286.

    Article  Google Scholar 

  • Lan, H. Q., Liu, J., and Bai, Z. M., 2011, Wave-field simulation in VTI media with irregular free surface: Chinese J. Geophys. (in Chinese), 54(8), 2072–2084.

    Google Scholar 

  • Lan, H. Q., Xu T., and Bai, Z. M., 2012, Study of the effects due to the anisotropic stretching of the surfacefitting grid on the traveltime computation for irregular surface by the coordinate transforming method: Chinese J. Geophys. (in Chinese), accepted.

  • Liu, E., Crampin, S., Queen, J. H., and Rizer, W. D., 1993, Velocity and attenuation anisotropy caused by microcracks and microfractures in a multiazimuth reverse VSP: Can. J. Explor. Geophys., 29, 177–188.

    Google Scholar 

  • Liu, E., Hudson, J. A., and Pointer, T., 2000, Equivalent medium representation of fractured rock: J. Geophys. Res., 105, 2981–3000.

    Article  Google Scholar 

  • Moczo, P., Bystricky, E., Kristek, J., Carcione, J., and Bouchon, M., 1997, Hybrid modelling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures: Bull. Seism. Soc. Am., 87, 1305–1323.

    Google Scholar 

  • Nielsen, P., If, F., Berg, P., and Skovgaard, O., 1994, Using the pseudospectral technique on curved grids for 2D acoustic forward modelling: Geophys. Prospect., 42, 321–342.

    Article  Google Scholar 

  • Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H. O., 2007, Stable difference approximations for the elastic wave equation in second order formulation: SIAM J. Numer. Anal., 45, 1902–1936.

    Article  Google Scholar 

  • Pei, Z. L., He, H. M., and Xie, F., 2010, Elastic wave equation forward modeling for complex surface and complex structure model: Oil Geophysical Prospecting, 45(6), 807–818.

    Google Scholar 

  • Pyrak-Nolte, L. J., Myer, L. R., and Cook, N. G. W., 1990, Transmission of seismic waves across single natural fractures: Journal of Geophysical Research, 95, 8617–8638.

    Article  Google Scholar 

  • Robertsson, J. O. A., 1996, A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography: Geophysics, 61, 1921–1934.

    Google Scholar 

  • Robertsson, J. O. A., and Holliger, K., 1997, Modeling of seismic wave propagation near the earth’s surface: Phys. Earth Planet. Inter., 104, 193–211.

    Article  Google Scholar 

  • Sanchez-Sesma, F. J., Bravo, M. A., and Herrear, I., 1985, Surface motion of topographical irregularities for incident P, SV, and Rayleigh waves: Bull. Seismol. Soc. Am., 75, 263–269.

    Google Scholar 

  • Schoenberg, M., 1980, Elastic wave behavior across linear slip interfaces: Journal of the Acoustical Society of America, 68, 1516–1521.

    Article  Google Scholar 

  • Schoenberg, M., and Muir, F., 1989, A calculus for finely layered anisotropic medium: Geophysics, 54, 581–589.

    Google Scholar 

  • Schoenberg, M., and Sayers, C., 1995, Seismic anisotropy of fractured rocks: Geophysics, 60, 204–211.

    Google Scholar 

  • Tessmer, E., and Kosloff, D., 1994, 3-D elastic modeling with surface topography by a Chebychev spectral method: Geophysics, 59, 464–473.

    Google Scholar 

  • Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, Numerical grid generation: foundations and applications: North-Holland, Amsterdam.

    Google Scholar 

  • Thomsen, L., 1995, Elastic anisotropy due to aligned cracks in porous rock: Geophys. Prosp., 43, 805–829.

    Article  Google Scholar 

  • Tian, X. B., Zhao, D. P., Zhang, H. S., Tian, Y., and Zhang, Z. J., 2010a, Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt: J. Geophys. Res., 115, B10308, doi:10.1029/2008JB006229.

    Article  Google Scholar 

  • Tian, X. B., Teng, J. W., Zhang, H. S., Zhang, Z. J., Zhang, Y. Q., Yang, H, 2010b, Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis: Phys. Earth Planet. Inter., 194, 186–193.

    Google Scholar 

  • Wu, C., Harris, J. M., Nihei, K. T., and Nakagawa, S., 2005, Two-dimensional finite-difference seismic modeling of an open fluid-filled fracture: Comparison of thin-layer and linear-slip models: Geophysics, 70, T57–T62.

    Google Scholar 

  • Yan, S. X., Liu, H. S., and Yao, X. G., 2000, Geophysical exploration technology in the mountainous area: Petroleum Industry Press, Beijing.

    Google Scholar 

  • Yilmaz, O., and Doherty, S. M., 2001, Seismic data analysis: Society of Exploration Geophysicists.

  • Zhang, J. F., 2005, Elastic wave modeling in fractured media with an explicit approach: Geophysics, 70, T75–T85.

    Google Scholar 

  • Zhang, W., and Chen, X., 2006, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation: Geophys. J. Int., 167, 337–353.

    Article  Google Scholar 

  • Zhang, Z. J., Wang, G., and Harris, J. M., 1999, Multicomponent wavefield simulation in viscous extensively dilatancy anisotropic medium: Phys. Earth Planet. Inter., 114, 25–38.

    Article  Google Scholar 

  • Zhang, Z. J., and Klemperer, S. L., 2010, Crustal structure of the Tethyan Himalaya, south Tibet: new constraints from old wide-angle seismic data: Geophys. J. Int., 181, 1247–1260.

    Google Scholar 

  • Zhang, Z. J., Yuan, X., Chen, Y., Tian, X., Kind, R., Li, X., and Teng, J., 2010, Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin: Earth Planet Sci Lett, 292, 254–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Qiang Lan.

Additional information

The paper is sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences No. KZCX2-YW-132), the Important National Science and Technology Specific Projects (No. 2008ZX05008-006), and the National Natural Science Foundation of China (Nos. 41074033, 40721003, 40830315, and 40874041).

Lan Hai-Qiang graduated with a Bachelor’s degree from the College of Geo-Exploration Science and Technology at Jilin University. Currently, he is a PhD student at the Institute of Geology and Geophysics, Chinese Academy of Sciences, majoring in seismic wave modeling and travel-time computation with an irregular surface. He is the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, HQ., Zhang, ZJ. Seismic wavefield modeling in media with fluid-filled fractures and surface topography. Appl. Geophys. 9, 301–312 (2012). https://doi.org/10.1007/s11770-012-0341-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-012-0341-5

Keywords

Navigation