Skip to main content
Log in

Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

In this study, the Surface Energy Balance Algorithms for Land (SEBAL) model and Moderate Resolution Imaging Spectroradiometer (MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration (ET) over the Sanjiang Plain, Northeast China. Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index (NDVI) time series data, which were reconstructed based on the Savitzky-Golay filtering approach. The MODIS product Quality Assessment Science Data Sets (QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling. This provided 12 overpasses during 184-day growing season from May 1st to October 31st, 2006. Daily ET estimated by the SEBAL model was misestimaed at the range of −11.29% to 27.57% compared with that measured by Eddy Covariance system (10.52% on average). The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation. Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced. Seasonal ET is lower in dry farmland (average (Ave): 491 mm) and paddy field (Ave: 522 mm) and increases in wetlands to more than 586 mm. As expected, higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain (Ave: 823 mm), broadleaf forest (Ave: 666 mm) and mixed wood (Ave: 622 mm) in the southern/western Sanjiang Plain. The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelghani C, Hoedjes J, Rodriquez J et al., 2008. Using remotely sensed data to estimate area-averaged daily surface fluxes over a semi-arid mixed agricultural land. Agricultural and Forest Meteorology, 148(3): 330–342. doi: 10.1016/j.agrformet.2007.09.014

    Article  Google Scholar 

  • Ahmad M, Biggs T, Turral H et al., 2005. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna River Basin of India. In: 10th IWA Specialist Conference on Watershed and River Basin Management. Calgary, Canada: International Water Association Publishing, 83–90.

    Google Scholar 

  • Alexandridis T, Cherif I, Chemin Y et al., 2009, Integrated methodology for estimating water use in Mediterranean agricultural areas. Remote Sensing, 1(3): 445–465. doi: 10.3390/rs1030445

    Article  Google Scholar 

  • Allen R, Pereira L, Raes D et al., 1998. Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations, 103–125.

    Google Scholar 

  • Allen R, Tasumi M, Trezza R, 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)-model. ASCE Journal of Irrigation and Drainage Engineering, 133(4): 380–394. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)

    Article  Google Scholar 

  • Anderson M, Norman J, Diak G et al., 1997. A two-source time integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment, 60: 195–216. doi: 10.1016/S0034-4257(96)00215-5

    Article  Google Scholar 

  • Bastiaanssen W, 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1–2): 87–100. doi: 10.1016/S0022-1694(99)00202-4

    Article  Google Scholar 

  • Bastiaanssen W, Ahmad M, Chemin Y, 2002. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resource Research, 38(12): 1–9. doi: 10.1029/2001WR000386

    Article  Google Scholar 

  • Bastiaanssen W, Chandrapala L, 2003. Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agricultural Water Management, 58(2): 171–192. doi: 10.1016/S0378-3774(02)00128-2

    Article  Google Scholar 

  • Bastiaanssen W, Menenti M, Feddes R et al., 1998a. A remote sensing surface energy balance algorithm for land (SEBAL) -1. Formulation. Journal of Hydrology, 213(1–4): 198–212. doi: 10.1016/S0022-1694(98)00253-4

    Google Scholar 

  • Bastiaanssen W, Noordman E, Pelgrum H et al., 2005. Sebal model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1): 85–93. doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)

    Article  Google Scholar 

  • Bastiaanssen W, Pelgrum H, Soppe R et al., 2008. Thermal-infrared technology for local and regional scale irrigation analyses in horticultural systems. Proceedings of the fifth International Symposium on Irrigation of Horticultural Crops, 792: 33–46.

    Google Scholar 

  • Bastiaanssen W, Pelgrum H, Wang J et al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. Journal of Hydrology, 212–213: 213–229. doi: 10.1016/S0022-1694(98)00254-6

    Article  Google Scholar 

  • Bergez J E, Garcia F, Lapasse L, 2004. A hierarchical partitioning method for optimizing irrigation strategies. Agricultural Systems, 80(3): 235–253. doi: 10.1016/j.agsy.2003.07.004

    Article  Google Scholar 

  • Bouwer L, Biggs T, Aerts C, 2008. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model. Hydrological Processes, 22(5): 670–682. doi: 10.1002/hyp.6636

    Article  Google Scholar 

  • Brutsaert W, Hsu A, Schmugge T, 1993. Parameterization of surface heat fluxes above a forest with satellite thermal sensing and boundary-layer soundings. Journal of Applied Meteorology, 32(5): 909–917. doi: 10.1175/1520-0450(1993)032〈0909:POSHFA〉2.0.CO;2

    Article  Google Scholar 

  • Brutsaert W, Sugitam M, 1992. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. Journal of Geophysical Research, 97(D17): 18377–18382. doi: 10.1029/92JD00255

    Article  Google Scholar 

  • Budyko M, 1974. Climate and Life. Orlando: Academic Press, 1–7.

    Google Scholar 

  • Caparrini F, Entekhabi D, Entekhabi D, 2003. Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data. Boundary-Layer Meteorology, 107(3): 605–633. doi: 10.1023/A:1022821718791

    Article  Google Scholar 

  • Chávez J, Christopher M, Neale L et al., 2005. Comparing aircraft-based remotely sensed energy balance fluxes with eddy covariance tower data using heat flux source area functions. Journal of Hydrometeorology, 6(6): 923–940. doi: 10.1175/JHM467.1

    Article  Google Scholar 

  • Colditz R, Conrad C, Wehrmann T et al., 2008. Tiseg: A flexible software tool for time-series generation of modis data utilizing the quality assessment science data set. IEEE Transactions on Geoscience and Remote Sensing, 46(10): 3296–3308. doi: 10.1109/TGRS.2008.921412

    Article  Google Scholar 

  • Conrad C, Dech S, Hafeez M et al., 2007. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrigation and Drainage Systems, 21(3–4): 197–218. doi: 10.1007/s10795-007-9029-z

    Article  Google Scholar 

  • Crago R, 1996. Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology, 180(1–4): 173–194. doi: 10.1016/0022-1694(95)02903-6

    Article  Google Scholar 

  • Droogers P, Bastiaanssen W, 2002. Irrigation performance using hydrological and remote sensing modeling. Journal of Irrigation and Drainage Engineering, 128(1): 11–18. doi: 10.1061/(ASCE)0733-9437(2002)128:1(11)

    Article  Google Scholar 

  • Dugas W, Fritschen L, Gay L et al., 1991. Bowen ratio, eddy correlation and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agricultural and Forest Meteorology, 56(1–2): 1–20. doi: 10.1016/0168-1923(91)90101-U

    Article  Google Scholar 

  • Er-Raki S, Chehbouni A, Guemouria N et al., 2007. Combining fao-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agricultural Water Management, 87(1): 41–54. doi: 10.1016/j.agwat.2006.02.004

    Article  Google Scholar 

  • Farah H, 2001. Estimation of Regional Evaporation under Different Weather Conditions from Satellite and Meteorological Data: A Case Study in the Naivasha Basin, Kenya. Wageningen: Wageningen University, 170.

    Google Scholar 

  • Ferguson C, Wood E, Sheffield J et al., 2010. Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. International Journal of Remote Sensing, 31(14): 3821–3865. doi: 10.1080/01431161.2010.483490

    Article  Google Scholar 

  • Flannigan M, Stocks B, Turetsky M et al., 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3): 549–560. doi:10.1111/j.1365-2486.2008.01660.x

    Article  Google Scholar 

  • Franks S, Beven K, 1997. Bayesian estimation of uncertainty in land surface-atmosphere flux predictions. Journal of Geophysical Research, 102(20): 991–999. doi: 10.1029/97JD02011

    Article  Google Scholar 

  • González D M, Mateos L, 2008. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agricultural Water Management, 95(1): 48–58. doi: 10.1016/j.agwat.2007.09.001

    Article  Google Scholar 

  • Gowda P, Chavez J, Colaizzi P et al., 2007. ET mapping for agricultural water management: Present status and challenges. Irrigation science, 26(3): 223–237. doi: 10.1007/s00271-007-0088-6

    Article  Google Scholar 

  • Guo Y D, Sun L, 2012. Surface energy fluxes and control of evapotranspiration from a Carex lasiocarpa mire in the Sanjiang Plain, Northeast China. International Journal of Biometeorology, 56(2): 221–232. doi: 10.1007/s00484-011-0415-8

    Article  Google Scholar 

  • Hall F, Huemmrich K, Goetz S et al., 1992. Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. Journal of Geophysical Research, 97: 19061–19089. doi: 10.1029/92JD02189

    Article  Google Scholar 

  • Hendrickx J M, Vink N H, Fayinke T, 1986. Water requirement for irrigated rice in a semi-arid region in West Africa. Agricultural Water Management, 11(1): 75–90. doi: 10.1016/0378-3774(86)90037-5

    Article  Google Scholar 

  • Hendrickx J, Hong S, Friesen J et al., 2006. Mapping energy balance fluxes and root zone soil moisture in the White Volta Basin using optical imagery. In: Proceedings of the International Society for Optical Engineering. Bellingham, USA: SPIE, 238–249.

    Google Scholar 

  • Huang N, Wang Z, Liu D et al., 2010. Selecting sites for converting farmlands to wetlands in the Sanjiang Plain, Northeast China, based on remote sensing and GIS. Environmental Management, 46(5): 790–800. doi: 10.1007/s00267-010-9547-6

    Article  Google Scholar 

  • Huete A, 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295–309. doi: 10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Huete A, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1): 195–213. doi: 10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Iqbal M, 1983. An Introduction to Solar Radiation. New York: Academic Press, 23–25.

    Google Scholar 

  • Itenfisu D, Elliott R, Allen R et al., 2003. Comparison of reference evapotranspiration calculation as part of the ASCE standardization effort. Journal of Irrigation and Drainage Engineering ASCE, 129(6): 440–448. doi: 10.1061/(ASCE) 0733-9437(2003)129:6(440)

    Article  Google Scholar 

  • Iziomon M G, Mayer H, Matzarakis A, 2003. Downward atmospheric irradiance under clear and cloudy skies: Measurement and parameterization. Journal of Atmospheric and Solar-Terrestrial Physics, 65: 1107–1116.

    Article  Google Scholar 

  • Jabloun M, Sahli A, 2008. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data-Application to Tunisia. Agricultural Water Management, 95(6): 707–715. doi: 10.1016/j.agwat.2010.09.005

    Article  Google Scholar 

  • Jacob F, Olioso A, Gu X et al., 2002. Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing and a spatialized surface energy balance model. Agronomie, 22(6): 669–680. doi: 10.1051/agro:2002053

    Article  Google Scholar 

  • Justice C, Vermote E, Townshend J et al., 1998. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1228–1249. doi: 10.1109/36.701075

    Article  Google Scholar 

  • Kalma J, Jupp D, 1990. Estimating evaporation from pasture using infrared thermometry: Evaluation of a one-layer resistance model. Agricultural and Forest Meteorology, 51(3–4): 223–246. doi: 10.1016/0168-1923(90)90110-R

    Article  Google Scholar 

  • Kustas W, Humes K, Norman J et al., 1996. Single and dual source modeling of surface energy fluxes with radiometric surface temperature. Journal of Applied Meteorology, 35(1): 110–121. doi: 10.1175/1520-0450(1996)035〈0110:SADSMO〉2.0.CO;2

    Article  Google Scholar 

  • Kustas W, Norman J, 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal (United Kingdom), 41(4): 495–516. doi: 10.1080/02626669609491522

    Article  Google Scholar 

  • Lee X, Yu Q, Sun X M et al., 2004. Micrometeorological fluxes under the influence of regional and local advection: A revisit. Agricultural and Forest Meteorology, 122: 111–124. doi: 10.1016/j.agrformet.2003.02.001

    Article  Google Scholar 

  • Maayar M, Chen J, 2006. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sensing of Environment, 102(1–2): 33–51. doi: 10.1016/j.rse.2006.01.017

    Article  Google Scholar 

  • McKenney M, Rosenberg N, 1993. Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology, 64(1–2): 81–110. doi: 10.1016/0168-1923(93)90095-Y

    Article  Google Scholar 

  • Miller G, Baldocchi D, Law B et al., 2007. An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Advances in Water Resources, 30(5): 1065–1081. doi: 10.1016/j.advwatres.2006.10.002

    Article  Google Scholar 

  • Mishra U, Clay D, Trooien T et al., 2008. Assessing the value of using a remote sensing-based evapotranspiration map in site-specific management. Journal of Plant Nutrition, 31(7): 1188–1202. doi: 10.1080/01904160802134491

    Article  Google Scholar 

  • Mohan S, Arumugam N, 1994. Irrigation crop coefficients for lowland rice. Irrigation and Drainage Systems, 8(3): 159–176. doi: 10.1007/BF00881016

    Article  Google Scholar 

  • Mu Q, Heinsch F, Zhao M, 2007. Development of a global evapotranspiration algorithm based on modis and global meteorology data. Remote Sensing of Environment, 111(4): 519–536. doi: 10.1016/j.rse.2007.04.015

    Article  Google Scholar 

  • Nicols W, Cuenca R, 1993. Evaluation of the evaporative fraction for parameterization of the surface energy balance. Water Resources Research, 29(11): 3681–3690. doi: 10.1029/93WR01958

    Article  Google Scholar 

  • Priban K, Ondok J, 1985. Heat balance components and evapotranspiration from a sedge-grass marsh. Folia Geobotanica, 20(1): 41–56. doi: 10.1007/BF02856464

    Google Scholar 

  • Rosema A, 1990. Comparison of meteosat-based rainfall and evapotranspiration mapping in the sahel region. International Journal of Remote Sensing, 11(12): 2299–2309. doi: 10.1080/01431169008955176

    Article  Google Scholar 

  • Ryu Y, Baldocchi D, Black T et al., 2012. On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agricultural and Forest Meteorology, 152(1): 212–222. doi: 10.1016/j.agrformet.2011.09.010

    Article  Google Scholar 

  • Savitzky A, Golay M, 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8): 1627–1639. doi: 10.1021/ac60214a047

    Article  Google Scholar 

  • Schuepp P, Leclerc M, MacPherson J et al., 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology, 50(1): 355–373. doi: 10.1007/BF00120530

    Article  Google Scholar 

  • Shuttleworth W, Gurney R, Hsu Y et al., 1989. FIFE: The variation in energy partioning at surface flux sites, Remote sensing and large-scale processes. Proceedings of the IAHS Third International Assembly. Baltimore, USA: IAHS Publication, 67–74.

    Google Scholar 

  • Snyder W, Wan Z, Zhang Y et al., 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14): 2753–2774. doi: 10.1080/014311698214497

    Article  Google Scholar 

  • Souch C, Wolfe C, Grimmond C, 1996. Wetland evaporation and energy partitioning: Indiana Dunes National Lakeshore. Journal of Hydrology, 184(3–4): 189–208. doi: 10.1016/0022-1694(95)02989-3

    Article  Google Scholar 

  • Sugita M, Brutsaert W, 1993. Comparison of land surface temperatures derived from satellite observations with ground truth during FIFE. International Journal of Remote Sensing, 14(9): 1659–1676. doi: 10.1080/01431169308953993

    Article  Google Scholar 

  • Sun L, Song C, 2008. Evapotranspiration from freshwater marsh in the Sanjiang Plain, Northeast China. Journal of Hydrology, 352(1–2): 202–210. doi: 10.1016/j.jhydrol.2008.01.010

    Article  Google Scholar 

  • Tanaka K, Tamagawa I, Ishikawa H et al., 2004. Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998. Journal of Hydrology, 283: 169–183. doi: 10.1016/S0022-1694(03)00243-9

    Article  Google Scholar 

  • Tasumi M, 2003. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. Moscow: University of Idaho, 357.

    Google Scholar 

  • Tasumi M, Allen R, 2000. Application of the sebal methodology for estimating consumptive use of water and stream flow depletion in the bear river basin of idaho through remote sensing. In: Final Report. The Raytheon Systems Company, EOSDIS Project.

  • Tasumi M, Allen R, Trezza R et al., 2005. Satellite-based energy balance to assess within population variance of crop coefficient curves. Journal of Irrigation and Drainage Engineering, 131(1): 94–109. doi: 10.1061/(ASCE)0733-9437(2005)131:1(94)

    Article  Google Scholar 

  • Teixeira A, 2010. Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the São Francisco River Basin (Brazil) using remote sensing and Penman-Monteith Equation. Remote Sensing, 2(5): 1287–1319. doi: 10.3390/rs0251287

    Article  Google Scholar 

  • Trezza, 2002. Evapotranspiration Using a Satellite-based Surface Energy Balance with Standardized Ground Control. Logan: Utah State University, 317.

    Google Scholar 

  • Twine T, Kustas W, Norman J et al., 2000. Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103(3): 279–300. doi: 10.1016/S0168-1923(00)00123-4

    Article  Google Scholar 

  • Verstraeten W, Veroustraete F, Feyen J, 2005. Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products. Remote Sensing of Environment, 96(2): 256–276. doi: 10.1016/j.rse.2005.03.004

    Article  Google Scholar 

  • Wan Z, Dozier J, 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892–905. doi: 10.1109/36.508406

    Article  Google Scholar 

  • Wang J, Bastiaanssen W, Ma Y et al., 1998. Aggregation of land surface parameters in the Oasis-Desert systems of Northwest China. Hydrological Processes, 12(13–14): 2133–2147. doi: 10.1002/(SICI)1099-1085(19981030)12:13/14〈2133::AID-HYP725〉3.0.CO; 2–6

    Article  Google Scholar 

  • Wang Yiyong, Yang Qing, Liu Zhenqian, 2001. Water characteristics of typical wetlands in the Sanjiang Plain. Chinese Journal of Eco-Agriculture, 9(1): 43–45. (in Chinese)

    Google Scholar 

  • Wang Z, Zhang B, Zhang S et al., 2006. Changes of land use and of ecosystem service values in Sanjiang Plain, NorthEast China. Environmental Monitoring and Assessment, 112(1): 69–91. doi: 10.1007/s10661-006-0312-5

    Article  Google Scholar 

  • Webb E, Pearman G, Leuning R, 1980. Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106(447): 85–100. doi: 10.1002/qj.49710644707

    Article  Google Scholar 

  • Xiong Jun, Wu Bingfang, Yan Nana et al., 2008. Research on temporal reconstruction of evapotranspiration using remote sensing. Progress in Geography, 27(2): 53–59. (in Chinese)

    Google Scholar 

  • Zhan X, Kustas W, Humes K, 1996. An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature. Remote Sensing of Environment, 58(3): 242–256. doi: 10.1016/S0034-4257(96)00049-1

    Article  Google Scholar 

  • Zhang L, Lemeur R, Goutorbe J, 1995. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data. Agricultural and Forest Meteorology, 77(3–4): 241–261. doi: 10.1016/0168-1923(95)02264-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Du.

Additional information

Foundation item: Under the auspices of National Basic Research Program of China (No. 2010CB951304-5), National Natural Science Foundation of China (No. 41101545, 41030743)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Song, K., Wang, Z. et al. Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chin. Geogr. Sci. 23, 73–91 (2013). https://doi.org/10.1007/s11769-013-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0587-8

Keywords

Navigation