Skip to main content
Log in

A fast single-image super-resolution via directional edge-guided regularized extreme learning regression

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The goal of super-resolution (SR) is to increase the spatial resolution of a low-resolution (LR) image by a certain factor using either single or multiple LR input images. This paper presents a machine learning-based approach to reconstruct a high-resolution (HR) image from a single LR image. Inspired by the human visual cortex system, which is sensitive to high-frequency (HF) components in an image, we aim to model this concept by training a neural network to estimate the missing HF components that contain structural details. In our method, various directional edge responses at each pixel are considered to obtain more complete HF information and then a regularized extreme learning regression model is trained using a set of LR and HR images. Finally, the trained system is applied to a LR image to generate HR image. The experimental results confirm the effectiveness and efficiency of the proposed scheme in comparison with the state-of-the-art SR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prendergast, R.S., Nguyen, T.Q.: A block-based super-resolution for video sequences. In: IEEE International Conference on Image Processing, pp. 1240–1243 (2008)

  2. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)

    Article  Google Scholar 

  3. Carrato, S., Ramponi, G., Marsi, S.: A simple edge-sensitive image interpolation filter. Int. Conf. Image Process. 3, 711–7143 (1996)

    Google Scholar 

  4. Allebach, J., Wong, P.W.: Edge-directed interpolation. In: Image Processing, Proceedings, International Conference on, vol. 3, pp. 707–710 (1996)

  5. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10), 1521–1527 (2001)

    Article  Google Scholar 

  6. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15(8), 2226–2238 (2006)

    Article  Google Scholar 

  7. Sun, J., Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  8. Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans. Image Process. 20(6), 1529–1542 (2011)

    Article  MathSciNet  Google Scholar 

  9. Wang, L., Xiang, S., Meng, G., Wu, H., Pan, C.: Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1289–1299 (2013)

    Article  Google Scholar 

  10. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graphics Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  11. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  12. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21(11), 4544–4556 (2012)

    Article  MathSciNet  Google Scholar 

  13. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 275–282 (2004)

  14. Gao, X., Zhang, K., Tao, D., Li, X.: Image super-resolution with sparse neighbor embedding. IEEE Trans. Image Process. 21(7), 3194–3205 (2012)

    Article  MathSciNet  Google Scholar 

  15. Chen, C., Fowler, J.E.: Single-image super-resolution using multihypothesis prediction. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 608–612 (2012)

  16. Timofte, R., Smet, V., Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: IEEE International Conference on Computer Vision, pp. 1920–1927 (2013)

  17. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  18. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  19. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513529 (2012)

    Google Scholar 

  20. An, L., Bhanu, B.: Image super-resolution by extreme learning machine. In: IEEE International Conference on Image Processing (ICIP), pp. 2209–2212 (2012)

  21. Robinson, Gner S.: Edge detection by compass gradient masks. Comput. Gr. Image Process. 6(5), 492–501 (1977)

    Article  Google Scholar 

  22. Serre, D.: Matrices: Theory and Applications. Springer, New York (2002)

  23. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and its Applications. Wiley, New York (1971)

  24. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Giachetti, A., Asuni, N.: Real-time artifact-free image upscaling. IEEE Trans. Image Process. 20(10), 2760–2768 (2011)

    Article  MathSciNet  Google Scholar 

  27. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Curves and Surfaces, pp. 711–730 (2010)

  28. Yeganli, F., Nazzal, M., Unal, M., Ozkaramanli, H.: Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness. Signal Image Video Process. 10(3), 535–542 (2016)

    Article  Google Scholar 

  29. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Computer Vision and Pattern Recognition (2008)

  30. Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE Trans. Image Process. 19(11), 2889–2900 (2010)

    Article  MathSciNet  Google Scholar 

  31. Kim, K. I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

  32. Tian, J., Ma, K.-K.: A survey on super-resolution imaging. Signal Image Video Process. 5(3), 329–342 (2011)

    Article  MathSciNet  Google Scholar 

  33. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  34. Gao, X., Zhang, K., Tao, D., Li, X.: Joint learning for single-image super-resolution via a coupled constraint. IEEE Trans. Image Process. 21(2), 469–480 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zhang, K., Tao, D., Gao, X., Li, X., Xiong, Z.: Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans. Image Process. 24(3), 846–861 (2015)

  36. Abedi, A., Kabir, E.: Text-image super-resolution through anchored neighborhood regression with multiple class-specific dictionaries. Signal Image Video Process. (2016). doi:10.1007/s11760-016-0933-2

  37. Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network cascade for image super-resolution. In: European Conference on Computer Vision, pp. 49-64. Springer (2014)

  38. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  39. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  40. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hu, X., Peng, S., Hwang, W.-L.: Learning adaptive interpolation kernels for fast single-image super resolution. Signal Image Video Process. 8(6), 1077–1086 (2014)

    Article  Google Scholar 

  42. Haris, M., Widyanto, M.R., Nobuhara, H.: First-order derivative-based super-resolution. Signal Image Video Process. (2016). doi:10.1007/ s11760-016-0880-y

  43. Zhou, D., Shen, X., Dong, W.: Image zooming using directional cubic convolution interpolation. IET Image Process. 6(6), 627–634 (2012)

    Article  MathSciNet  Google Scholar 

  44. Peleg, T., Elad, M.: A statistical prediction model based on sparse representations for single image super-resolution. IEEE Trans. Image Process. 23(6), 2569–2582 (2014)

    Article  MathSciNet  Google Scholar 

  45. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings. Eighth IEEE International Conference On Computer Vision, vol. 2, pp. 416-423. IEEE (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paheding Sidike.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 520 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidike, P., Krieger, E., Alom, M.Z. et al. A fast single-image super-resolution via directional edge-guided regularized extreme learning regression. SIViP 11, 961–968 (2017). https://doi.org/10.1007/s11760-016-1045-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1045-8

Keywords

Navigation