Skip to main content
Log in

Combination of the adaptive Kuwahara and BM3D filters for filtering mixed Gaussian and impulsive noise

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A combination of the adaptive Kuwahara filter and BM3D algorithm is proposed in order to improve results with respect to both of these ingredients. The adaptive Kuwahara filter is used in pre-filtering stage for the BM3D algorithm. The combined filter has ability to filter Gaussian, impulsive, and mixed noise up to 20% of impulsive noise. The proposed filter is tested on various digital images and for different filtering quality measures and shows significant improvements with respect to both adaptive Kuwahara filter and BM3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smolka, B., Kusnik, D.: Robust local similarity filter for the reduction of mixed Gaussian and impulsive noise in color digital images. Signal Image Video Process. 9, 49–56 (2015)

    Article  Google Scholar 

  2. Hu, H., de Haan, G.: Adding explicit content classification to nonlinear filters. Signal Image Video Process. 5, 291–305 (2011)

    Article  Google Scholar 

  3. Djurović, I.: BM3D filter in salt and pepper noise removal. EURASIP J. Image Video Process. 2016, 13 (2016). doi:10.1186/s13640-016-0113-x

    Article  Google Scholar 

  4. Papari, G., Petkov, N., Campisi, P.: Artistic edge and corner enhancing smoothing. IEEE Trans. Image Process. 16(10), 2449–2461 (2007)

    Article  MathSciNet  Google Scholar 

  5. Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Processing of RI-angiocardiographic images. In: Preston Jr, K., Onoe, M. (eds) Digital Processing of Biomedical Images. Plenum, NY, pp. 187–202 (1976)

  6. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bartyzel, K.: Adaptive Kuwahara filter. Signal Image Video Process. doi:10.1007/s11760-015-0791-3

  8. http://www.cs.tut.fi/~foi/GCF-BM3D/

  9. Sarjanoja, S.: BM3D image denoising using heterogeneous computing platforms, M.Sc. Thesis, University of Oulu (2015)

  10. Lebrun, M.: An analysis and implementation of the BM3D image denoising method. Image Process. Line 2, 175–213 (2012). doi:10.5201/ipol.2012.l-bm3d

    Article  Google Scholar 

  11. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference Computer Vision and Pattern Recognition, vol. 2, pp. 60–65 (2005)

  12. Sharifymoghaddam, M., Beheshti, S., Elahi, P., Hashemi, M.: Similarity validation based nonlocal means image denoising. IEEE Signal Process. Lett. 22(12), 2185–2188 (2015)

    Article  Google Scholar 

  13. Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010)

    Article  MathSciNet  Google Scholar 

  14. Zhang, J., Xiong, R., Zhao, C., Zhang, Y., Ma, S., Gao, W.: CONCOLOR: constrained non-covex low-rank model for image deblocking. IEEE Trans. Image Process. 25(3), 1246–1259 (2015)

    Article  Google Scholar 

  15. Zang, Y., Huang, H., Zhang, L.: Efficient structure-aware image smoothing by local extrema on space-filling curve. IEEE Trans. Vizuelization Comput. Gr. 20(9), 1253–1265 (2014)

    Article  Google Scholar 

  16. Tofighi, M., Kose, K., Cetin, A.E.: Denoising images corrupted by impulsive noise using projections onto the epigraph set of the total variation function (PES-TV). SIViP 9, 41–48 (2015). doi:10.1007/s11760-015-0827-8

    Article  Google Scholar 

  17. Chou, Y.-L.: Statistical Analysis. Holt International (1975)

  18. Huber, P.J., Ronchetti, E.M.: Robust statistics, 2nd edn. Wiley, Hoboken (2009). ISBN:978-0-470-12990-6

  19. Astola, J., Kuosmanen, P.: Fundamentals of Nonlinear Digital Filtering. CRC Press Inc., Boca Raton (1997)

    MATH  Google Scholar 

  20. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Proc. 16(5), 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  21. Malviya, S., Ahmia, H.: Image enhancement using improved mean filter at low and high noise density. Int. J. Emerg. Eng. Res. Technol. 2(3), 45–52 (2014)

    Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Sattar, F., Floreby, L., Salomonsson, G., Lovstrom, B.: Image enhancement based on a nonlinear multiscale method. IEEE Trans. Image Process. 6(6), 888–895 (1997)

    Article  Google Scholar 

  24. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008: a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10, 30–45 (2009)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by Ministry of Science of Montenegro through national project ‘Intelligent search techniques for parametric estimation in communication and power engineering,’ and EU FP7 Project Foremont.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Djurović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djurović, I. Combination of the adaptive Kuwahara and BM3D filters for filtering mixed Gaussian and impulsive noise. SIViP 11, 753–760 (2017). https://doi.org/10.1007/s11760-016-1019-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1019-x

Keywords

Navigation