Skip to main content
Log in

A color intensity invariant low-level feature optimization framework for image quality assessment

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Image quality assessment (IQA) algorithms evaluate the perceptual quality of an image using evaluation scores that assess the similarity or difference between two images. We propose a new low-level feature-based IQA technique, which applies filter-bank decomposition and center-surround methodology. Differing from existing methods, our model incorporates color intensity adaptation and frequency scaling optimization at each filter-bank level and spatial orientation to extract and enhance perceptually significant features. Our computational model exploits the concept of object detection and encapsulates characteristics proposed in other IQA algorithms in a unified architecture. We also propose a systematic approach to review the evolution of IQA algorithms using unbiased test datasets, instead of looking at individual scores in isolation. Experimental results demonstrate the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barlow, H., Földiák, P.: The computing neuron. In: Adaptation and Decorrelation in the Cortex, pp. 54–72. Addison-Wesley Longman Publishing Co., Inc, Boston (1989). http://dl.acm.org/citation.cfm?id=103938.103942

  2. Cavanaugh, J., Bair, V., Movshon, J.: Nature and interaction of signals from the receptive field center and surround in macaque VI neurons. J. Neurophysiol. 88, 2530–2540 (2002)

    Article  Google Scholar 

  3. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chang, H.W., Zhang, Q.W., Wu, Q.G., Gan, Y.: Perceptual imagequality assessment by independent feature detector. Neurocomputing 151, 1142–1152 (2015)

    Article  Google Scholar 

  5. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11–13, 2011, pp. 215–223 (2011)

  6. Daly, S.J.: Visible differences predictor: an algorithm for the assessment of image fidelity. pp. 2–15 (1992). doi:10.1117/12.135952

  7. Dashan Gao, V.M., Vasconcelos, N.: On the plausibility of the discriminant center-surround hypothesis for visual saliency. J. Vis. 8(7), 1–18 (2008)

    Article  Google Scholar 

  8. Dominik, S., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. Artificial Neural Networks (ICANN). Lecture Notes in Computer Science vol. 6354, pp. 92–101 (2010)

  9. Ellemberg, D., Allen, H.A., Hess, R.F.: Second-order spatial frequency and orientation channels in human vision. Vis. Res. 46(17), 2798–2803 (2006). doi:10.1016/j.visres.2006.01.028

    Article  Google Scholar 

  10. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Saliency from hierarchical adaptation through decorrelation and variance normalization. Image Vis. Comput. 30(1), 51–64 (2012)

    Article  Google Scholar 

  11. Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. 207(187–217), 9 (1980)

    MATH  Google Scholar 

  12. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.: Live image quality assessment database release 2

  13. Imamoglu, N., Lin, W., Fang, Y.: A saliency detection model using low-level features based on wavelet transform. IEEE Trans. Multimed. 15(1), 96–105 (2013). doi:10.1109/TMM.2012.2225034

  14. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153 (2009). doi:10.1109/ICCV.2009.5459469

  15. Larson, E.C., Chandler, D.: Categorical image quality (CSIQ) database. http://vision.okstate.edu/csiq (2010)

  16. Larson, E.C., Chandler, D.M.: Most apparent distortion: a dual strategy for full-reference image quality assessment. In: Proceedings of SPIE, vol. 7242, pp. 72420S–72420S-17 (2009)

  17. Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 21(4), 1500–1512 (2012). doi:10.1109/TIP.2011.2175935

    Article  MathSciNet  Google Scholar 

  18. Liu, H., Heynderickx, I.: Towards an efficient model of visual saliency for objective image quality assessment. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1153–1156 (2012). doi:10.1109/ICASSP.2012.6288091

  19. Otazu, X., Vanrell, M., Prraga, C.A.: Multiresolution wavelet framework models brightness induction effects. Vis. Res. 48(5), 733–751 (2008). doi:10.1016/j.visres.2007.12.008

    Article  Google Scholar 

  20. Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., et al.: Image database TID2013: peculiarities, results and perspectives. Signal Process. Image Commun. 30, 57–77 (2015)

    Article  Google Scholar 

  21. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008—a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10(4), 30–45 (2009)

    Google Scholar 

  22. Rohaly, A.M., Corriveau, P.J., Libert, J.M.: Video quality experts group: current results and future directions (2000). doi:10.1117/12.386632

  23. Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C., Markey, M.K.: Complex wavelet structural similarity: a new image quality index. In: IEEE Transactions on Image Processing (2009)

  24. Sheikh, H., Bovik, A., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005). doi:10.1109/TIP.2005.859389

    Article  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2004, vol. 2, pp. 1398–1402. IEEE (2003)

  27. Wu, J., Lin, W., Shi, G., Liu, A.: Perceptual quality metric with internal generative mechanism. IEEE Trans. Image Process. 22(1), 43–54 (2013). doi:10.1109/TIP.2012.2214048

    Article  MathSciNet  Google Scholar 

  28. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014). doi:10.1109/TIP.2014.2346028

    Article  MathSciNet  Google Scholar 

  30. Zhang, L., Zhang, D., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). doi:10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottayil, N.K., Cheng, I., Dufaux, F. et al. A color intensity invariant low-level feature optimization framework for image quality assessment. SIViP 10, 1169–1176 (2016). https://doi.org/10.1007/s11760-016-0873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0873-x

Keywords

Navigation