Skip to main content
Log in

Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Due to the high dimensionality of hyperspectral image (HSI), dimension reduction or feature extraction is usually needed before the HSI classification. Traditional linear discriminant analysis (LDA) method for feature extraction usually encounters difficulty because the available training samples in HSI classification are limited, which causes the singularity of data scatter matrix. In this paper, we propose a sparse matrix transform-based LDA (SMT-LDA) algorithm for the HSI classification. By using SMT, the total scatter matrix used in LDA can be constrained to have an eigen-decomposition where the eigenvectors can be sparsely parametrized by a limited number of Givens rotations. In this way, the estimated scatter matrix is always positive definite and well conditioned even in the case of limited training samples. The proposed SMT-LDA method is compared with regularized LDA and PCA-LDA methods on two benchmark hyperspectral data sets. Experimental results indicate that the performance of the proposed method is overall superior to these methods, especially for small-sample-size classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Borengasser, M., Hungate, W.S., Watkins, R.: Hyperspectral Remote Sensing-Principles and Applications. CRC Press, Boca Raton (2008)

    Google Scholar 

  2. Plaza, A., Benediktsson, J.A., Boardman, J.W., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

  3. Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inform. Theory 14, 55–63 (1968)

    Article  Google Scholar 

  4. Harsanyi, J.C., Chang, C.I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)

  5. Benediktsson, J.A., Pesaresi, M., Arnason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41, 1940–1949 (2003)

    Article  Google Scholar 

  6. Zhou, Y., Peng, J., Chen, C.L.: Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(2), 1082–1095 (2015)

    Article  Google Scholar 

  7. Lee, Y.P.: Palm vein recognition based on a modified (2D)\(^2\)LDA. Signal Image Video Process. 9, 229–242 (2015)

    Article  Google Scholar 

  8. Wang, Y., Ni, H., Liu, P., Li, W.: Improved SDA based on mixed weighted Mahalanobis distance. Signal Image Video Process. doi:10.1007/s11760-014-0703-y

  9. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recogn. 34(10), 2067–2070 (2001)

    Article  MATH  Google Scholar 

  10. Friedman, J.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)

    Article  MathSciNet  Google Scholar 

  11. Hoffbeck, J.P., Landgrebe, D.A.: Covariance matrix estimation and classification with limited training data. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 763–767 (1996)

    Article  Google Scholar 

  12. Chen, H., Pan, Z., Li, L., Tang, Y.: Learning rates of coefficient-based regularized classifier for density level detection. Neural Comput. 25(4), 1107–1121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bandos, T.V., Bruzzone, L., Camps-Valls, G.: Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)

    Article  Google Scholar 

  14. Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  15. Yektaii, M., Bhattacharya, P.: A criterion for measuring the separability of clusters and its applications to principal component analysis. Signal Image Video Process. 5, 93–104 (2011)

    Article  Google Scholar 

  16. Cao, G.Z., Bouman, C.A.: Covariance estimation for high dimensional data vectors using the sparse matrix transform. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 225–232. MIT Press, Cambridge (2009)

  17. Cao, G.Z., Bachega, L.R., Bouman, C.A.: The sparse matrix transform for covariance estimation and analysis of high dimensional signals. IEEE Trans. Image Process. 20(3), 625–640 (2011)

    Article  MathSciNet  Google Scholar 

  18. Theiler, J., Cao, G.Z., Bachega, L.R., Bouman, C.A.: Sparse matrix transform for hyperspectral image processing. IEEE J. Sel. Top. Signal Process. 5(3), 424–437 (2011)

    Article  Google Scholar 

  19. Peng, J.: Sparse matrix transform based weight updating in partial least squares regression. J. Math. Chem. 52(8), 2197–2209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, K., Cheng, Y.Q., Yang, J.Y., Liu, X.: An efficient algorithm for Foley–Sammon optimal set of discriminant vectors by algebraic method. Int. J. Pattern Recog. Artif. Intell. 6(5), 817–829 (1992)

    Article  Google Scholar 

  21. Dornaika, F., Bosaghzadeh, A.: Exponential local discriminant embedding and its application to face recognition. IEEE Trans. Cybern. 43(3), 921–934 (2013)

    Article  Google Scholar 

  22. Foody, G.M.: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 70(5), 627–633 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 61306070 and 11371007, by the Natural Science Foundation of Hubei Province under Grant No. 2015CFB327, and by the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences) (Project No. 15K02ESPCR). The authors would like to thank Prof. D. Landgrebe for providing the Indian Pines data set, Prof. C.A. Bouman for sharing SMT codes, and Prof. C. Lin for providing LIBSVM toolbox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Luo, T. Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification. SIViP 10, 761–768 (2016). https://doi.org/10.1007/s11760-015-0808-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0808-y

Keywords

Navigation