Skip to main content
Log in

Quality-driven and real-time iris recognition from close-up eye videos

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper deals with the computation of robust iris templates from video sequences. The main contribution is to propose (i) optimal tracking and robust detection of the pupil, (ii) smart selection of iris images to be enrolled, and (iii) multi-thread and quality-driven decomposition of tasks to reach real-time processing. The evaluation of the system was done on the multiple biometric grand challenge dataset. Especially, we conducted a systematic study regarding the fragile bit rate and the number of merged images, using classical criteria. We reached an equal error rate value of 0.2 % that reflects high performance on this database with respect to previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Only videos #05344v27 and #05416v25 failed to enroll.

References

  1. Abhyankar, A., Schuckers, S.: Iris quality assessment and bi-orthogonal wavelet based encoding for recognition. Pattern Recogn. 42(9), 1878–1894 (2009). doi:10.1016/j.patcog.2009.01.004. http://www.sciencedirect.com/science/article/pii/S0031320309000053

  2. Ait-el-Fquih, B., Desbouvries, F.: Kalman filtering in triplet Markov chains. IEEE Trans. Signal Process. 54(8), 2957–2963 (2006)

    Article  Google Scholar 

  3. Costa Filho, C., Pinheiro, C., Costa, M., Albuquerque Pereira, W.: Applying a novelty filter as a matching criterion to iris recognition for binary and real-valued feature vectors. Signal Image Video Process. 7(2), 287–296 (2013). doi:10.1007/s11760-011-0237-5.

  4. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004). doi:10.1109/TCSVT.2003.818350

    Article  Google Scholar 

  5. Desbouvries, F., Pieczynski, W.: Triplet Markov models and Kalman filtering. Comptes Rendus de l’Académie des Sciences-Mathématique-Série I 336(8), 667–670 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). doi:10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  7. Ghodrati, H., Dehghani, M., Danyali, H.: A new accurate noise-removing approach for non-cooperative iris recognition. Signal Image Video Process. 8(1), 1–10 (2014). doi:10.1007/s11760-012-0396-z

  8. Hollingsworth, K., Ortiz, E., Bowyer, K.: The best bits in an iris code. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2009). doi:10.1109/TPAMI.2008.185

    Article  Google Scholar 

  9. Hollingsworth, K., Ortiz, E., Bowyer, K.: Improved iris recognition through fusion of Hamming distance and fragile bit distance. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2465–2476 (2011). doi:10.1109/TPAMI.2011.89

    Article  Google Scholar 

  10. Jain, A., Ross, A., Nandakumar, K.: Introduction to Biometrics. Bücher, Springer, US (2011)

    Book  Google Scholar 

  11. Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004). doi:10.1109/TCSVT.2003.818349

    Article  Google Scholar 

  12. Jang, Y.K., Kang, B.J., Park, K.R.: A study on eyelid localization considering image focus for iris recognition. Pattern Recogn. Lett. 29(11), 1698–1704 (2008). doi:10.1016/j.patrec.2008.05.001

  13. Kang, B., Park, K.: A study on iris image restoration. In: Kanade, T., Jain, A., Ratha, N. (eds.) Audio- and Video-Based Biometric Person Authentication, Lecture Notes in Computer Science, vol. 3546, pp. 31–40. Springer, Berlin (2005). doi:10.1007/11527923_4

  14. Lefevre, T., Dorizzi, B., Garcia-Salicetti, S., Lemperiere, N., Belardi, S.: Effective elliptic fitting for iris normalization. Comput. Vis. Image Underst. 117(6), 732–745 (2013). doi:10.1016/j.cviu.2013.01.005

  15. Li, P., Liu, X., Xiao, L., Song, Q.: Robust and accurate iris segmentation in very noisy iris images. Image Vis. Comput. 28(2), 246–253 (2010). doi:10.1016/j.imavis.2009.04.010

  16. Masek, L.: Recognition of human iris patterns for biometric identification. University of Western Australia, Technical report (2003)

  17. Némesin, V., Derrode, S.: Robust blind pairwise Kalman algorithms using QR decompositions. IEEE Trans. Signal Process. 61(1), 5–9 (2013)

    Article  MathSciNet  Google Scholar 

  18. Némesin, V., Derrode, S., Benazza-Benyahia, A.: Gradual iris code construction from close-up eye video. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P., Zemcík, P. (eds.) 14th International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS’12), Lecture Notes in Computer Science, vol. 7517, pp. 12–23. Springer (2012)

  19. Nguyen, K., Fookes, C., Sridharan, S., Denman, S.: Quality-driven super-resolution for less constrained iris recognition at a distance and on the move. IEEE Trans. Inf. Forensics Secur. 6(4), 1248–1258 (2011). doi:10.1109/TIFS.2011.2159597

    Article  Google Scholar 

  20. Nguyen, K., Fookes, C., Sridharan, S., Denman, S.: Feature-domain super-resolution for iris recognition. Comput. Vis. Image Underst. 117(10), 1526–1535 (2013). doi:10.1016/j.cviu.2013.06.010. http://www.sciencedirect.com/science/article/pii/S1077314213001306

  21. Phillips, P.J., Flynn, P.J., Beveridge, J.R., Scruggs, W.T., O’Toole, A.J., Bolme, D., Bowyer, K.W., Draper, B.A., Givens, G.H., Lui, Y.M., Sahibzada, H., Scallan, J.A., Weimer, S.: Overview of the multiple biometrics grand challenge. In: Proceedings of the 3rd International Conference on Advances in Biometrics, (ICB’09), pp. 705–714. Springer, Berlin (2009). doi:10.1007/978-3-642-01793-3_72

  22. Roy, K., Bhattacharya, P., Suen, C.: Iris segmentation using game theory. Signal Image Video Process. 6(2), 301–315 (2012). doi:10.1007/s11760-010-0193-5

  23. Shin, K.Y., Park, K.R., Kang, B.J., Park, S.J.: Super-resolution method based on multiple multi-layer perceptrons for iris recognition. In: Proceedings of the 4th International Conference on Ubiquitous Information Technologies Applications (ICUT’09), pp. 1–5 (2009). doi:10.1109/ICUT.2009.5405701

  24. Szewczyk, R., Grabowski, K., Napieralska, M., Sankowski, W., Zubert, M., Napieralski, A.: A reliable iris recognition algorithm based on reverse biorthogonal wavelet transform. Pattern Recogn. Lett. 33(8), 1019–1026 (2012). doi:10.1016/j.patrec.2011.08.018

  25. Tabassi, E., Grother, P., Salamon, W.: IREX II - IQCE - Iris Quality Calibration and Evaluation. Technical report, NIST Interagency Report 7820 (2011)

  26. Yooyoung, L., Micheals, R.J., Phillips, P.J.: Improvements in video-based automated system for iris recognition (VASIR). In: Workshop on Motion and Video Computing (WMVC’09), pp. 1–8 (2009). doi:10.1109/WMVC.2009.5399237

Download references

Acknowledgments

Authors would like to thank DGA (French Direction Générale de l’Armement) and CNRS for financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérian Némesin.

Appendix: Proof of Eqs. (5) and (6)

Appendix: Proof of Eqs. (5) and (6)

Let them prove by recurrence:

  • For \(p=0\), the proof is trivial (\({\varvec{F}}'_0 = {\varvec{F}}\) and \(\varvec{Q}'_0 = \varvec{Q}'\))

  • Let assume  (5) and (6) true for \(p-1\). Then,

    $$\begin{aligned} {\varvec{t}}_{n+p}&= {\varvec{F}}'_{p-1} {\varvec{t}}_n + \varvec{\omega }_{n,p-1} \end{aligned}$$
    (7)

    where \(\varvec{\omega }_{n,p - 1}\) follow the Gaussian law \(\mathcal {N}(0, Q'_{p-1})\). Let them prove for \(p\):

Proof

$$\begin{aligned} {\varvec{t}}_{n + p + 1}&= {\varvec{F}}{\varvec{F}}'_{p-1} {\varvec{t}}_n+ {\varvec{F}}\underbrace{\varvec{\omega }_{n,p-1}}_{\sim \mathcal {N}(0, Q'_{p-1})} + \underbrace{\varvec{\omega }_{n + p + 1}}_{\sim \mathcal {N}(0, Q)} \\&= {\varvec{F}}^{p + 1} {\varvec{t}}_{n} + \underbrace{{\varvec{F}}\varvec{\omega }_{n,p-1}}_{\sim \mathcal {N}(0, {\varvec{F}}Q'_p {\varvec{F}}^T)} + \underbrace{\varvec{\omega }_{n + p + 1}}_{\sim \mathcal {N}(0, Q)} \\&= {\varvec{F}}'_{p} {\varvec{t}}_{n} + \underbrace{{\varvec{F}}\varvec{\omega }_{n,p-1}}_{\sim \mathcal {N}(0, {\varvec{F}}\left[ \sum _{r = 0}^{p - 1} {\varvec{F}}^r \varvec{Q}\left[ {\varvec{F}}^r\right] ^T\right] {\varvec{F}}^T)} + \underbrace{\varvec{\omega }_{n + p + 1}}_{\sim \mathcal {N}(0, Q)} \\&= {\varvec{F}}'_{p} {\varvec{t}}_{n} + \underbrace{{\varvec{F}}\varvec{\omega }_{n,p-1}}_{\sim \mathcal {N}(0, \sum _{r = 1}^{p} {\varvec{F}}^r \varvec{Q}\left[ {\varvec{F}}^r \right] ^T)} + \underbrace{\varvec{\omega }_{n + p + 1}}_{\sim \mathcal {N}(0, Q)} \\&= {\varvec{F}}'_{p} {\varvec{t}}_{n} + \underbrace{{\varvec{F}}\varvec{\omega }_{n,p-1} + \varvec{\omega }_{n + p + 1}}_{\sim \mathcal {N}(0, \sum _{r = 0}^{p} {\varvec{F}}^r \varvec{Q}\left[ {\varvec{F}}^r\right] ^T )} \\&= {\varvec{F}}'_{p} {\varvec{t}}_{n} + \underbrace{\varvec{\omega }_{n,p + 1}}_{\sim \mathcal {N}(0, Q'_{p})} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Némesin, V., Derrode, S. Quality-driven and real-time iris recognition from close-up eye videos. SIViP 10, 153–160 (2016). https://doi.org/10.1007/s11760-014-0720-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0720-x

Keywords

Navigation