Skip to main content
Log in

Time-varying ARMA stable process estimation using sequential Monte Carlo

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Various time series data in applications ranging from telecommunications to financial analysis and from geophysical signals to biological signals exhibit non-stationary and non-Gaussian characteristics. α-Stable distributions have been popular models for data with impulsive and non-symmetric characteristics. In this work, we present time-varying autoregressive moving-average α-stable processes as a potential model for a wide range of data, and we propose a method for tracking the time-varying parameters of the process with α-stable distribution. The technique is based on sequential Monte Carlo, which has assumed a wide popularity in various applications where the data or the system is non-stationary and non-Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miyanaga Y., Miki N., Nagai N.: Adaptive identification of a time-varying ARMA speech model. in: IEEE Trans. Acoust. Speech Signal Process. 34(3), 423–433 (1986)

    Article  Google Scholar 

  2. Mobarakeh A., Rofooei F., Ahmadi G.: Simulation of earthquake records using time-varying ARMA (2,1) model. Probab. Eng. Mech. 17(1), 15–34 (2002)

    Article  Google Scholar 

  3. Refan, M., Mohammadi, K., Mosavi, M.: Time varying ARMA processing on low cost GPS receiver data to improve the position accuracy. In: Proceedings of Asian GPS (2002)

  4. Patomaki, L., Kaipio, J., Karjalainen, P.: Tracking of nonstationary EEG with the roots of ARMA models. In: IEEE 17TH Annual Conference Engineering in Medicine and Biology Society, vol. 2, pp. 877–878 (1995)

  5. Zielinski J., Bouaynaya N., Schonfeld D., O’Neill W.: Time-dependent ARMA modeling of genomic sequences. BMC Bioinform. 9(Suppl 9), S14 (2008)

    Article  Google Scholar 

  6. Kuruoglu E., Zerubia J.: Modelling synthetic aperture radar images with a generalisation of the Rayleigh distribution. in: IEEE Trans. Image Process. 13(4), 527–533 (2004)

    Article  Google Scholar 

  7. Bloch K., Arce G.: Median correlation for the analysis of gene expression data. Signal Process. 83, 811–823 (2003)

    Article  MATH  Google Scholar 

  8. Pesquet-Popescu B., Pesquet J.: Synthesis of bidimensional alpha-stable models with long-range dependence. Signal Process. 82, 1927–1940 (2002)

    Article  MATH  Google Scholar 

  9. Rosario M., Garroppo G., Giordano S., Procissi G.: Testing alpha-stable processes in capturing the queuing behavior of broadband teletraffic networks. Signal Process. 82, 1861–1872 (2002)

    Article  MATH  Google Scholar 

  10. Lévy P.: Calcul des Probabilités. Gauthier-Villars, Paris (1925)

    MATH  Google Scholar 

  11. Mandelbrot B.: The variation of certain speculative prices. J. Bus. 36(4), 394–419 (1963)

    Article  Google Scholar 

  12. Gallardo J., Makrakis D., Orozco-Barbosa L.: Use of alpha-stable self-similar stochastic processes for modeling traffic in broadband networks. Perform. Eval. 40(1–3), 71–98 (2000)

    Article  MATH  Google Scholar 

  13. Bates, S., Mclaughlin, S.: Testing the Gaussian assumption for self-similar teletraffic models. In: Proceedings of IEEE Signal Processing Workshop on Higher Order Statistics, pp. 444–447 (1997)

  14. Samorodnitsky G., Taqqu M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (Stochastic Modeling). Chapman & Hall/CRC, London (1994)

    MATH  Google Scholar 

  15. Davis R., Knight K., Liu J.: m-estimation for autoregressions with infinite variance. Stoch. Process. Appl. 40, 145–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nikias C., Shao M.: Signal Processing with Alpha-Stable Distributions and Applications. Wiley-Interscience, New York (1995)

    Google Scholar 

  17. Lombardi M., Godsill S.: On-line Bayesian estimation of signals in symmetric alpha-stable noise. in: IEEE Trans. Signal Process. 54(2), 775–779 (2006)

    Article  Google Scholar 

  18. Kuruoglu E.: Nonlinear least lp-norm filters for nonlinear autoregressive alpha-stable processes. Digit. Signal Process. 12(1), 119–142 (2002)

    Article  Google Scholar 

  19. Salas-Gonzalez D., Kuruoglu E., Ruiz D.: Modelling with mixture of symmetric stable distributions using Gibbs sampling. Signal Process. 90(3), 774–783 (2010)

    Article  MATH  Google Scholar 

  20. Gencaga D., Ertuzun A., Kuruoglu E.: Modeling of non-stationary autoregressive alpha-stable processes by particle filters. Digit. Signal Process 18(3), 465–478 (2008)

    Article  Google Scholar 

  21. Gencaga D., Kuruoglu E., Ertuzun A., Yildirim S.: Estimation of time-varying AR SαS processes using Gibbs sampling. Signal Process. 88(10), 2564–2572 (2008)

    Article  MATH  Google Scholar 

  22. Haas, M., Mittnik, S., Paolella, M., Steudee, S.: Stable Mixture GARCH Model. National centre of competence in research financial valuation and risk management. National Centre of Competence in Research Financial Valuation and Risk Management Working Paper No. 257

  23. Crisan D.: Particle Filters-A Theoretical Perspective. Springer, New York (2001)

    Google Scholar 

  24. Doucet A., Godsill S., Andrieu C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  25. Djuric P., Kotecha J., Zhang J., Huang Y., Ghirmai T., Bugallo M., Miguez J.: Particle filtering. in: IEEE Signal Process. Mag. 20(5), 19–38 (2003)

    Article  Google Scholar 

  26. Jachan M., Matz G., Hlawatsch F.: Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes. in: IEEE Trans. Signal Proc. 55, 4366–4381 (2007)

    Article  MathSciNet  Google Scholar 

  27. Haseyama M., Kitajima H.: An ARMA order selection method with fuzzy reasoning. Signal Process. 81(6), 1331–1335 (2001)

    Article  MATH  Google Scholar 

  28. Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer series in Statistics, pp. 209–244 (2005)

  29. Douc, R., Cappé, O., Moulines, E.: Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th International Symposium on Image and Signal Processing Analysis, pp. 64–69 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zheng or Ercan E. Kuruoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Zheng, H. & Kuruoglu, E.E. Time-varying ARMA stable process estimation using sequential Monte Carlo. SIViP 7, 951–958 (2013). https://doi.org/10.1007/s11760-011-0285-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0285-x

Keywords

Navigation