Skip to main content
Log in

Optimal orientation estimators for detection of cylindrical objects

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper introduces low-level operators in the context of detecting cylindrical axis in 3D images. Knowing the axis of a cylinder is particularly useful since its location, length and curvature derive from this knowledge. This paper introduces a new gradient-based optimal operator dedicated to accurate estimation of the direction toward the axis. The operator relies on Finite Impulse Response filters. The approach is presented first in a 2D context, thus providing optimal gradient masks for locating the center of circular objects. Then, a 3D extension is provided, allowing the exact estimation of the orientation toward the axis of cylindrical objects when this axis coincides with one of the mask reference axes. Applied to more general cylinders and to noisy data, the operator still provides accurate estimation and outperforms classical gradient operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coindreau O., Vignoles G.L., Goyhénèche J.-M. (2005). Multiscale X-ray CMT of C/C composites: a tool for properties assessment. Ceram. Trans. 175: 77–84

    Google Scholar 

  2. Bosmans H., Wilms G., Dymarkowski S., Marchal G. (2001). Basic principles of MRA”. Eur. J. Radiol. 38(1): 2–9

    Article  Google Scholar 

  3. Coindreau O., Vignoles G.L. (2005). Assessment of structural and transport properties in fibrous C/C composite performs as digitized by X-ray CMT. Part I: Image acquisition and geometrical properties. J. Mat. Res. 20: 2328–2339

    Google Scholar 

  4. Plouraboué F., Cloetens P., Fonta C., Steyer A., Lauwers F., Marc-Vergnes J.-P. (2004). High resolution X-ray imaging of vascular networks. J. Microsc. 215(2): 139–148

    Article  MathSciNet  Google Scholar 

  5. Pal N.R., Pal S.K. (1993). A review of image segmentation techniques. Pattern Recognit. 6(9): 1277–1294

    Article  Google Scholar 

  6. Lakare, S.:3D Segmentation Techniques for Medical Volumes, Center for Visual Computing, Department of Computer Science, State University of New York, http://www.cs.sunysb.edu/~mueller/teaching/cse616/sarangRPE.pdf (2000)

  7. Chang Y.L., Li X. (1994). Adaptive image region growing. IEEE Trans. Image Process. 3(6): 868–872

    Article  MathSciNet  Google Scholar 

  8. Verdonck, B., Bloch, I., Maître, H.: Accurate segmentation of blood vessels from 3D medical images. In: ICIP’96—IEEE Int. Conf. on Image Processing, Lausanne, pp. 311–314 (1996)

  9. Hernandez Hoyos, M.: Segmentation anisotrope 3D pour la quantification en imagerie vasculaire par résonance magnétique, Ph.D. Thesis (2002)

  10. Langs G., Peloschek P., Bischof H. (2003). Determining Position and Fine Shape Detail in Radiological Anatomy. LNCS 2781: 532–539

    Google Scholar 

  11. Winkelbach S., Westphal R., Goesling T. (2003). Pose estimation of cylindrical fragments for semi-automatic bone fracture reduction. LNCS 2781: 566–573

    Google Scholar 

  12. Rabbani, T., van den Heuvel, F.: Efficient hough transform for automatic detection of cylinders in point clouds. In: Proc. the 11th Annual Conference of the Advanced School for Computing and Imaging (ASCI ’05). Het Heijderbos, Heijen, The Netherlands (2005)

  13. McInerney T., Terzopoulos D. (1996). Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2): 91–108

    Article  Google Scholar 

  14. Xu, C., Phan, D.L., Prince, J.L.: Image segmentation using deformable models, Handbook of Medical Imaging, vol.2, Chap. 3 SPIE Press, California (2000)

  15. Chan, T.F., Vese, L.A.: Active contour and segmentation models using geometric PDE’s for medical imaging. Geometric Methods in Bio-Medical Image Processing, Series: Mathematics and Visualization, pp. 63–75 Springer, Heidelberg (2002)

  16. Cohen L.D., Cohen I. (1993). Finite element methods for active contour models and balloons for 2D and 3D images. IEEE Trans. Pattern Analysis Machine Intelligence 15(11): 1131–1147

    Article  Google Scholar 

  17. Krissian K., Malandrain G., Ayache N. (2000). Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80: 130–171

    Article  MATH  Google Scholar 

  18. Russ J.C. (1995). Image Processing Handbook, 2nd edn. CRC press, Boca Raton

    Google Scholar 

  19. Canny J.F. (1986). A computational approach of edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6): 679–698

    Article  Google Scholar 

  20. Le Pouliquen F., Da Costa J.-P., Germain C., Baylou P. (2005). A new adaptive framework for unbiased orientation estimation in textured images. Pattern Recognit. 38: 2032–2046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Germain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulat, C., Donias, M., Baylou, P. et al. Optimal orientation estimators for detection of cylindrical objects. SIViP 2, 51–58 (2008). https://doi.org/10.1007/s11760-007-0035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0035-2

Keywords

Navigation