TOP

, Volume 20, Issue 2, pp 310–327

Quantitative stability of linear infinite inequality systems under block perturbations with applications to convex systems

  • M. J. Cánovas
  • M. A. López
  • B. S. Mordukhovich
  • J. Parra
Original Paper

DOI: 10.1007/s11750-011-0226-4

Cite this article as:
Cánovas, M.J., López, M.A., Mordukhovich, B.S. et al. TOP (2012) 20: 310. doi:10.1007/s11750-011-0226-4

Abstract

The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel–Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system’s data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et al. (SIAM J. Optim. 20, 1504–1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system’s coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.

Keywords

Semi-infinite and infinite programming Parametric optimization Variational analysis Convex infinite inequality systems Quantitative stability Lipschitzian bounds Generalized differentiation Coderivatives Block perturbations 

Mathematics Subject Classification (2000)

90C34 90C25 49J52 49J53 65F22 

Copyright information

© Sociedad de Estadística e Investigación Operativa 2011

Authors and Affiliations

  • M. J. Cánovas
    • 1
  • M. A. López
    • 2
  • B. S. Mordukhovich
    • 3
  • J. Parra
    • 1
  1. 1.Center of Operations ResearchMiguel Hernández University of ElcheElche (Alicante)Spain
  2. 2.Department of Statistics and Operations ResearchUniversity of AlicanteAlicanteSpain
  3. 3.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations