Skip to main content
Log in

Bias-corrected and robust estimation of the bivariate stable tail dependence function

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

The stable tail dependence function gives a full characterisation of the extremal dependence between two or more random variables. In this paper, we propose an estimator for this function which is robust against outliers in the sample. The estimator is derived from a bivariate second-order tail model together with a proper transformation of the bivariate observations, and its asymptotic properties are studied under some suitable regularity conditions. Our estimation procedure depends on two parameters: \(\alpha \), which controls the trade-off between efficiency and robustness of the estimator, and a second-order parameter \(\tau \), which can be replaced by a fixed value or by an estimate. In case where \(\tau \) has been replaced by the true value or by an external consistent estimator, our robust estimator is asymptotically unbiased, whereas in case where \(\tau \) is mis-specified, one loses this property, but still our estimator performs quite well with respect to bias. The finite sample performance of our robust and bias-corrected estimator of the stable tail dependence function is examined on a simulation study involving uncontaminated and contaminated samples. In particular, its behavior is illustrated for different values of the pair \((\alpha , \tau )\) and is compared with alternative estimators from the extreme value literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdous B, Ghoudi K (2005) Non-parametric estimators of multivariate extreme dependence functions. J Nonparametr Stat 17:915–935

    Article  MathSciNet  MATH  Google Scholar 

  • Basu A, Harris IR, Hjort NL, Jones MC (1998) Robust and efficient estimation by minimizing a density power divergence. Biometrika 85:549–559

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Dierckx G, Goegebeur Y, Matthys G (1999) Tail index estimation and an exponential regression model. Extremes 2:177–200

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Dierckx G, Guillou A (2011) Bias-reduced estimators for bivariate tail modelling. Insur Math Econ 49:18–26

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Escobar-Bach M, Goegebeur Y, Guillou A (2016) Bias-corrected estimation of stable tail dependence function. J Multivar Anal 143:453–466

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes–theory and applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Beirlant J, Joossens E, Segers J (2009) Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. J Stat Plan Inference 139:2800–2815

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Vandewalle B (2002) Some comments on the estimation of a dependence index in bivariate extreme value statistics. Stat Probab Lett 60:265–278

    Article  MathSciNet  MATH  Google Scholar 

  • Bücher A, Dette H, Volgushev S (2011) New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann Stat 39:1963–2006

    Article  MathSciNet  MATH  Google Scholar 

  • Capéraà P, Fougères A-L (2000) Estimation of a bivariate extreme value distribution. Extremes 3:311–329

    Article  MathSciNet  MATH  Google Scholar 

  • Dierckx G, Goegebeur Y, Guillou A (2013) An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index. J Multivar Anal 121:70–86

    Article  MathSciNet  MATH  Google Scholar 

  • Draisma G, Drees H, Ferreira A, de Haan L (2004) Bivariate tail estimation: dependence in asymptotic independence. Bernoulli 10:251–280

    Article  MathSciNet  MATH  Google Scholar 

  • Drees H, Huang X (1998) Best attainable rates of convergence for estimators of the stable tail dependence function. J Multivar Anal 64:25–47

    Article  MathSciNet  MATH  Google Scholar 

  • Dutang C, Goegebeur Y, Guillou A (2014) Robust and bias-corrected estimation of the coefficient of tail dependence. Insur Math Econ 57:46–57

    Article  MathSciNet  MATH  Google Scholar 

  • Einmahl JHJ, de Haan L, Sinha AK (1997) Estimating the spectral measure of an extreme value distribution. Stoch Proc Appl 70:143–171

    Article  MathSciNet  MATH  Google Scholar 

  • Feuerverger A, Hall P (1999) Estimating a tail exponent by modelling departure from a Pareto distribution. Ann Stat 27:760–781

    Article  MathSciNet  MATH  Google Scholar 

  • Fougères AL, de Haan L, Mercadier C (2015) Bias correction in multivariate extremes. Ann Stat 43:903–934

    Article  MathSciNet  MATH  Google Scholar 

  • Goegebeur Y, Guillou A (2013) Asymptotically unbiased estimation of the coefficient of tail dependence. Scand J Stat 40:174–189

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes MI, de Haan L, Rodrigues LH (2008) Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses. J R Stat Soc B 70:31–52

    MathSciNet  MATH  Google Scholar 

  • Gomes MI, Martins MG (2002) “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5:5–31

    Article  MathSciNet  MATH  Google Scholar 

  • de Haan L, Ferreira A (2006) Extreme value theory–an introduction. Springer, New York

    Book  MATH  Google Scholar 

  • Huang X (1992) Statistics of bivariate extremes. PhD Thesis, Erasmus University Rotterdam, Tinbergen Institute Research series No. 22

  • Ledford AW, Tawn JA (1996) Statistics for near independence in multivariate extreme values. Biometrika 83:169–187

    Article  MathSciNet  MATH  Google Scholar 

  • Ledford AW, Tawn JA (1997) Modelling dependence within joint tail regions. J R Stat Soc B 59:475–499

    Article  MathSciNet  MATH  Google Scholar 

  • Peng L (2010) A practical way for estimating tail dependence functions. Stat Sin 20:365–378

    MathSciNet  MATH  Google Scholar 

  • Pickands J (1981) Multivariate extreme value distributions. B Int Stat Inst 49:859–878

    MathSciNet  MATH  Google Scholar 

  • Qi Y (1997) Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics. Acta Math Appl Sin-E 13:167–175

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt R, Stadtmüller U (2006) Non-parametric estimation of tail dependence. Scand J Stat 33:307–335

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and the reviewers for their helpful comments which led to improvements of their paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Goegebeur.

Additional information

This work was supported by a research Grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 719 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Bach, M., Goegebeur, Y., Guillou, A. et al. Bias-corrected and robust estimation of the bivariate stable tail dependence function. TEST 26, 284–307 (2017). https://doi.org/10.1007/s11749-016-0511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-016-0511-5

Keywords

Mathematics Subject Classification

Navigation