Skip to main content
Log in

A smooth simultaneous confidence band for conditional variance function

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

A smooth simultaneous confidence band (SCB) is obtained for heteroscedastic variance function in nonparametric regression by applying spline regression to the conditional mean function followed by Nadaraya–Waston estimation using the squared residuals. The variance estimator is uniformly oracally efficient, that is, it is as efficient as, up to order less than \(n^{-1/2}\), the infeasible kernel estimator when the conditional mean function is known, uniformly over the data range. Simulation experiments provide strong evidence that confirms the asymptotic theory while the computing is extremely fast. The proposed SCB has been applied to test for heteroscedasticity in the well-known motorcycle data and Old Faithful geyser data with different conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akritas MG, Van Keilegom I (2001) ANCOVA methods for heteroscedastic nonparametric regression models. J Am Stat Assoc 96:220–232

    Article  MATH  Google Scholar 

  • Bickel PJ, Rosenblatt M (1973) On some global measures of deviations of density function estimates. Ann Stat 31:1852–1884

    MathSciNet  Google Scholar 

  • Brown DL, Levine M (2007) variance estimation in nonparametric regression via the difference sequence method. Ann Stat 35:2219–2232

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Wang L (2008) Adaptive variance function estimation in heteroscedastic nonparametric regression. Ann Stat 36:2025–2054

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Wang Y (2008) Nonparametric variance estimation in the analysis of microarray data: a measurement error approach. Biometrika 95:437–449

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Ruppert D (1988) Transformations and weighting in regression. Champman and Hall, London

    Book  Google Scholar 

  • Claeskens G, Van Keilegom I (2003) Bootstrap confidence bands for regression curves and their derivatives. Ann Stat 31:1852–1884

    Article  MATH  Google Scholar 

  • Davidian M, Carroll RJ, Smith W (1988) Variance functions and the minimum detectable concentration in assays. Biometrika 75:549–556

    Article  MathSciNet  MATH  Google Scholar 

  • De Boor C (2001) A practical guide to splines. Springer, New York

    MATH  Google Scholar 

  • Dette H, Munk A (1998) Testing heteroscedasticity in nonparametric regression. J R Stat Soc Ser B 60:693–708

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels T (1996) Local polynomial modelling and its applications. Champman and Hall, London

    MATH  Google Scholar 

  • Fan J, Yao Q (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85:645–660

  • Hall P, Titterington MD (1988) On confidence bands in nonparametric density estimation and regression. J Multivar Anal 27:228–254

  • Hall P, Carroll RJ (1989) Variance function estimation in regression: the effect of estimating the mean. J R Stat Soc Ser B 51:3–14

    MathSciNet  MATH  Google Scholar 

  • Hall P, Marron JS (1990) On variance estimation in nonparametric regression. Biometrika 77:415–419

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W (1989) Asmptotic maximal deviation of M-smoothers. J Multivar Anal 29:163–179

    Article  MATH  Google Scholar 

  • Härdle W (1992) Applied nonparametric regression. Cambridge University Press, Cambridge

    Google Scholar 

  • Levine M (2006) Bandwidth selection for a class of difference-based variance estimators in the nonparametric regression: a possible approach. Comput Stat Data Anal 50:3405–3431

    Article  MATH  Google Scholar 

  • Liu R, Yang L, Härdle W (2013) Oracally efficient two-step estimation of generalized additive model. J Am Stat Assoc 108:619–631

  • Ma S, Yang L, Carroll RJ (2012) A simultaneous confidence band for sparse longitudinal regression. Stat Sin 22:95–122

    MathSciNet  MATH  Google Scholar 

  • Müller HG, Stadtmüller U (1987) Estimation of heteroscedasticity in regression analysis. Ann Stat 15:610–625

    Article  MATH  Google Scholar 

  • Silverman WB (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Song Q, Yang L (2009) Spline confidence bands for variance functions. J Nonparametr Stat 5:589–609

    Article  MathSciNet  Google Scholar 

  • Tusnády G (1977) A remark on the approximation of the sample df in the multidimensional case. Periodica Mathematica Hungarica 8:53–55

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Brown LD, Cai T, Levine M (2008) Effect of mean on variance function estimation in nonparametric regression. Ann Stat 36:646–664

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Liu R, Cheng F, Yang L (2014) Oracally efficient estimation of autoregressive error distribution with simultaneous confidence band. Ann Stat 42:654–668

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Yang L (2007) Spline-backfitted kernel smoothing of nonlinear additive autoregression model. Ann Stat 35:2474–2503

    Article  MATH  Google Scholar 

  • Wang J, Yang L (2009a) Polynomial spline confidence bands for regression curves. Stat Sin 19:325–342

    MATH  Google Scholar 

  • Wang L, Yang L (2009b) Spline estimation of single-index models. Stat Sin 19:765–783

    MATH  Google Scholar 

  • Wang J, Yang L (2009c) Efficient and fast spline-backfitted kernel smoothing of additive models. Ann Inst Stat Math 61:663–690

    Article  MATH  Google Scholar 

  • Xia Y (1998) Bias-corrected confidence bands in nonparametric regression. J R Stat Soc Ser B 60:797–811

    Article  MATH  Google Scholar 

  • Xue L, Yang L (2006) Additive coefficient modeling via polynomial spline. Stat Sin 16:1423–1446

    MathSciNet  Google Scholar 

  • Zheng S, Yang L, Härdle W (2014) A smooth simultaneous confidence corridor for the mean of sparse functional data. J Am Stat Assoc 109:661–673

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by NSF award DMS 1007594, Jiangsu Specially-Appointed Professor Program SR10700111, Jiangsu Key-Discipline Program ZY107992, National Natural Science Foundation of China award 11371272, and Research Fund for the Doctoral Program of Higher Education of China award 20133201110002. The authors thank the Editor and two Reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Yang.

Appendix A

Appendix A

Throughout this Appendix, we denote by \(\left\| \xi \right\| \) the Euclidean norm and \(\left| \xi \right| \) means the largest absolute value of the elements of any vector \(\xi \). We use \(c\), \(C\) to denote any positive constants in the generic sense. We denote for any given constant \( C>0\), a class of Lipschitz continuous functions by \(\text {Lip}\left( \left[ 0,1\right] ,C\right) =\left\{ \varphi \left| \left| \varphi \left( x\right) -\varphi \left( x^{\prime }\right) \right| \le C\left| x-x^{\prime }\right| \text {, }\forall x,x^{\prime }\in \left[ 0,1\right] \right. \right\} \).

1.1 A.1 Preliminaries

The Lemmas of this Subsection are needed for the proof of Propositions 1, 2 and 3. These Propositions clearly establish Theorems 1 and 2.

Lemma 1

Under Assumptions (A1)–(A5), there exists a constant \(C_{p}>0\), \(p>1\), such that for any \(m\in C^{p}\left[ 0,1\right] \) there is a spline function \(g_{p}\in G_{N}^{\left( p-2\right) }\) satisfying \(\left\| m-g_{p}\right\| _{\infty }\) \(\le CH^{p}\) and \(m-g_{p}\in \text {Lip}\left( \left[ 0,1\right] ,CH^{p-1}\right) \). The function \(\tilde{m}_{p}\left( x\right) \) given in Equation (12)

$$\begin{aligned} \left\| \tilde{m}_{p}\left( x\right) -m\left( x\right) \right\| _{\infty }\le C_{p}\underset{g\in G_{N}^{\left( p-2\right) }}{\inf }\ \left\| g-m\right\| _{\infty }=\mathcal {O}_{p}\left( H^{p}\right) . \end{aligned}$$

Moreover, for the function \(\tilde{\varepsilon }_{p}\left( x\right) \) given in Equation (12)

$$\begin{aligned} \left\| \tilde{\varepsilon }_{p}\left( x\right) \right\| _{2,n}= \mathcal {O}_{p}\left( n^{-1/2}N^{1/2}\right) ,\left\| \tilde{ \varepsilon }_{p}\left( x\right) \right\| _{\infty }=\mathcal {O}_{p}\left( n^{-1/2}N^{1/2}{(\log n)}^{1/2}\right) . \end{aligned}$$

See Lemma A.1 of Song and Yang (2009), and also Wang and Yang (2009) for detailed proof.

Lemma 2

Under Assumption (A6), as \(n\rightarrow \infty \),

$$\begin{aligned} \underset{x\in \left[ 0,1\right] }{\sup }\left\{ \left| \left\{ B_{j,p}\left( x\right) \right\} _{j=1-p}^{N}\right| +\left\| \left\{ B_{j,p}\left( x\right) \right\} _{j=1-p}^{N}\right\| \right\} =\mathcal {O} \left( H^{-1/2}\right) \end{aligned}$$
(21)

See Lemma A.4 of Song and Yang (2009) for detailed proof.

The strong approximation result of Tusnády (1977) is also needed.

Lemma 3

Let \(U_{1},\ldots ,U_{n}\) be i.i.d. r.v.’s on the \(2\) -dimensional unit square with \(P\left( U_{i}<\mathbf {t}\right) =\lambda \left( \mathbf {t}\right) ,\mathbf {0\le t\le 1,}\) where \(\mathbf {t=(} t_{1,}t_{2}\mathbf {)}\) and \(\mathbf {1=(}1,1\mathbf {)}\) are \(2\)-dimensional vectors, \(\lambda \left( \mathbf {t}\right) =t_{1}t_{2}.\) The empirical distribution function \(F_{n}^{u}\left( \mathbf {t}\right) \) based on sample \( \left( U_{1},\ldots ,U_{n}\right) \) is defined as \(F_{n}^{u}\left( \mathbf {t} \right) =n^{-1}\sum _{i=1}^{n}\mathrm{I}_{\left\{ U_{i}<\mathbf {t}\right\} }\) for \( \mathbf {0}\le \mathbf {t\le 1.}\) The \(2\)-dimensional Brownian bridge \( B\left( \mathbf {t}\right) \) is defined by \(B\left( \mathbf {t}\right) =W\left( \mathbf {t}\right) -\lambda \left( \mathbf {t}\right) W\left( \mathbf { 1}\right) \) for \(\mathbf {0}\le \mathbf {t\le 1}\), where \(W\left( \mathbf {t} \right) \) is a \(2\)-dimensional Wiener process. Then there is a version \( B_{n}\left( \mathbf {t}\right) \) of \(B\left( \mathbf {t}\right) \) such that

$$\begin{aligned} P\left[ \sup _{\mathbf {0\le t\le 1}}\left| n^{1/2}\left\{ F_{n}^{u}\left( \mathbf {t}\right) -\lambda \left( \mathbf {t}\right) \right\} -B_{n}\left( \mathbf {t}\right) \right| >\left( C\log n+x\right) \frac{ \log n}{n^{1/2}}\right] <Ke^{-\lambda x} \end{aligned}$$

holds for all \(x\), where \(C,K,\) \(\lambda \) are positive constants.

Denote the well-known Rosenblatt transformation for bivariate continuous \( \left( X,\varepsilon \right) \) as

$$\begin{aligned} \left( X^{\prime },\varepsilon ^{\prime }\right) =M\left( X,\varepsilon \right) =\left\{ F_{X}\left( x\right) ,F_{\varepsilon |X}\left( \varepsilon |x\right) \right\} , \end{aligned}$$
(22)

so that \(\left( X^{\prime },\varepsilon ^{\prime }\right) \) has uniform distribution on \(\left[ 0,1\right] ^{2}\), therefore

$$\begin{aligned} Z_{n}\left\{ M^{-1}\left( x^{\prime },\varepsilon ^{\prime }\right) \right\} =Z_{n}\left( x,\varepsilon \right) =\sqrt{n}\left\{ F_{n}\left( x,\varepsilon \right) -F\left( x,\varepsilon \right) \right\} , \end{aligned}$$
(23)

with \(F_{n}\left( x,\varepsilon \right) \) denoting the empirical distribution of \(\left( X,\varepsilon \right) \). Lemma 3 implies that there exists a version \(B_{n}\) of \(2\)-dimensional Brownian bridge such that

$$\begin{aligned} \sup _{x,\varepsilon }\left| Z_{n}\left( x,\varepsilon \right) -B_{n}\left\{ M\left( x,\varepsilon \right) \right\} \right| =\mathcal {O} _{a.s.}\left( n^{-1/2}\log ^{2}n\right) . \end{aligned}$$
(24)

Lemma 4

Under Assumptions (A2)-(A5), as \(n\rightarrow \infty \), for any sequence of functions \(r_{n}\) \(\in \text {Lip}\left( \left[ 0,1\right] ,l_{n}\right) ,l_{n}>0\) with \({\left\| r_{n}\right\| _{\infty }=\rho }_{n}\ge 0\)

$$\begin{aligned} {n}^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i}=\mathcal {\ U}_{p}\left( n^{-1/2}h^{-1/2}{\rho }_{n}\log ^{1/2}n+n^{-1/2}h^{1/2}l_{n}\right) \nonumber \\ \end{aligned}$$
(25)

Proof

Step 1. We first discretize the problem by letting \( 0=x_{0}<x_{1}\,<\cdots <x_{M_{n}}=1,M_{n}=n^{4}\) by equally spaced points, the smoothness of kernel \(K\) in Assumption (A4) imples that

$$\begin{aligned}&\!\!\!\underset{x\in \left[ 0,1\right] }{\sup }\left| n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i}\right| \le \underset{0\le j\le M_{n}}{\max } \left| n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x_{j}\right) r_{n}\left( X_{i}\right) \varepsilon _{i}\right| \\&\!\!\!\qquad +\underset{0\le j<M_{n}}{\max }\sup _{x\in \left[ x_{j},x_{j+1}\right] }\left| n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x_{j}\right) r_{n}\left( X_{i}\right) \varepsilon _{i}-n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i}\right| \\&\!\!\!\quad \le \underset{0\le j<M_{n}}{\max }\left| n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x_{j}\right) r_{n}\left( X_{i}\right) \varepsilon _{i}\right| +CM_{n}^{-1}h^{-2}n^{-1}\sum _{i=1}^{n}\left| r_{n}\left( X_{i}\right) \varepsilon _{i}\right| \end{aligned}$$

and the moment conditions on error \(\varepsilon \) in Assumption (A2), the rate of \(h\) in Assumption (A5) imply next that

$$\begin{aligned}&\underset{x\in \left[ 0,1\right] }{\sup }\left| n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i}\right| \nonumber \\&\quad \le \underset{0\le j<M_{n}}{\max }\left| n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x_{j}\right) r_{n}\left( X_{i}\right) \varepsilon _{i}\right| +\mathcal {O}_{p}\left\{ {\rho } _{n}n^{-2}\right\} . \end{aligned}$$
(26)

Step 2. To truncate the error, we denote \(D_{n}=n^{\alpha }\) with \(\alpha \) as in Assumption (A5). Assumption (A5) implies that \(D_{n}n^{-1/2}h^{-1/2} \log ^{2}n\rightarrow 0,\) \(n^{1/2}h^{1/2}D_{n}^{-\left( 1+\eta \right) }\rightarrow 0\), \(\sum _{n=1}^{\infty }D_{n}^{-\left( 2+\eta \right) }<\infty \). Write \(\varepsilon _{i}=\varepsilon _{i,1}^{D_{n}}+\varepsilon _{i,2}^{D_{n}}\), where \(\varepsilon _{i,1}^{D_{n}}=\varepsilon _{i}\mathrm{I}\left\{ \left| \varepsilon _{i}\right| >D_{n}\right\} ,\varepsilon _{i,2}^{D_{n}}=\varepsilon _{i}\mathrm{I}\left\{ \left| \varepsilon _{i}\right| \le D_{n}\right\} \), and denote \(\mu ^{D_{n}}\left( x\right) =\mathsf {E}\left\{ \varepsilon _{i}\mathrm{I}\left\{ \left| \varepsilon _{i}\right| \le D_{n}\right\} \mid X_{i}=x\right\} \). One immediately obtains that

$$\begin{aligned} \underset{x\in \left[ 0,1\right] }{\sup }\left| \mu ^{D_{n}}\left( x\right) \right| \le \mathsf {E}\left\{ \left| \varepsilon \right| ^{2+\eta }\mid X=x\right\} D_{n}^{-\left( 1+\eta \right) }=o\left( n^{-1/2}h^{-1/2}\right) , \nonumber \\ \underset{x\in \left[ 0,1\right] }{\sup }\left| \mathsf {E} n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \mu ^{D_{n}}\left( X_{i}\right) \right| =o\left( n^{-1/2}h^{-1/2}{\rho } _{n}\right) . \end{aligned}$$
(27)

Next, since \(P\left( \left| \varepsilon _{i}\right| >D_{n}\right) \le \mathsf {E}\left| \varepsilon \right| ^{2+\eta }D_{n}^{-(2+\eta )}\), \(\sum \nolimits _{n=1}^{\infty }P\left( \left| \varepsilon _{n}\right| >D_{n}\right) \le \) \(\mathsf {E}\left| \varepsilon \right| ^{2+\eta }\sum \nolimits _{n=1}^{\infty }D_{n}^{-\left( 2+\eta \right) }<+\infty \), Borel–Cantelli Lemma then implies that

$$\begin{aligned} P\left\{ \omega \mid \exists N\left( \omega \right) ,\varepsilon _{i,1}^{D_{n}}\left( \omega \right) =0,i=1,2,\ldots n,\text {for }n>N\left( \omega \right) \right\} =1. \end{aligned}$$

So one has for any \(k>0\)

$$\begin{aligned} \underset{x\in \left[ 0,1\right] }{\sup }{n}^{-1}\left| \sum \nolimits _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i,1}^{D_{n}}\right| =\mathcal {O}_{a.s.}\left( n^{-k}{\rho } _{n}\right) . \end{aligned}$$
(28)

Step 3. The truncated sum \(n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}\!-\!x\right) r_{n}\left( X_{i}\right) \varepsilon _{i,2}^{D_{n}}\) equals \(\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u\!-\!x\right) r_{n}\left( u\right) \varepsilon dF_{n}\left( u,\varepsilon \right) \), while

$$\begin{aligned}&\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dF\left( u,\varepsilon \right) =\mathsf {E} n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i,2}^{D_{n}} \\&\quad =\mathsf {E}n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \mu ^{D_{n}}\left( X_{i}\right) =u\left( n^{-1/2}h^{-1/2}{\rho } _{n}\right) , \end{aligned}$$

according to (27). The above two Equations imply that

$$\begin{aligned} n^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) r_{n}\left( X_{i}\right) \varepsilon _{i,2}^{D_{n}}&= n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dZ_{n}\left( u,\varepsilon \right) \nonumber \\&+u\left( n^{-1/2}h^{-1/2}{\rho }_{n}\right) . \end{aligned}$$
(29)

Step 4. The term \(n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dZ_{n}\left( u,\varepsilon \right) \) equals

$$\begin{aligned}&-n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}d\left\{ K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon \right\} Z_{n}\left( u,\varepsilon \right) \\&\quad =n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}d\left\{ K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon \right\} \left[ B_{n}\left\{ M\left( u,\varepsilon \right) \right\} -Z_{n}\left( u,\varepsilon \right) \right] \\&\qquad -n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}d\left\{ K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon \right\} B_{n}\left\{ M\left( u,\varepsilon \right) \right\} . \end{aligned}$$

Note that

$$\begin{aligned}&n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}d\left\{ K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon \right\} \left[ B_{n}\left\{ M\left( u,\varepsilon \right) \right\} -Z_{n}\left( u,\varepsilon \right) \right] \nonumber \\&\quad =n^{-1/2}\!\int _{\left| \varepsilon \right| \le D_{n}}\!\left\{ dK_{h}\left( u\!-\!x\right) \!r_{n}\left( u\right) \!+\!K_{h}\left( u\!-\!x\right) dr_{n}\!\left( u\right) \right\} d\varepsilon \left[ B_{n}\!\left\{ M\left( u,\varepsilon \right) \right\} \!-\!Z_{n}\left( u,\varepsilon \right) \right] \nonumber \\&\quad =U_{a.s.}\left\{ n^{-1/2}\log ^{2}n\times D_{n}\left( h^{-1}{\rho } _{n}+l_{n}\right) n^{-1/2}\right\} \nonumber \\&\quad =U_{a.s.}\left\{ D_{n}n^{-1}h^{-1}\log ^{2}n\left( {\rho } _{n}+hl_{n}\right) \right\} \nonumber \\&\quad =u_{a.s.}\left\{ n^{-1/2}h^{-1/2}\left( {\rho }_{n}+hl_{n}\right) \right\} \end{aligned}$$
(30)

by the growth constraint on \(D_{n}=n^{\alpha }\). Note also that

$$\begin{aligned}&-n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}d\left\{ K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon \right\} B_{n}\left\{ M\left( u,\varepsilon \right) \right\} \\&\quad =n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dB_{n}\left\{ M\left( u,\varepsilon \right) \right\} \\&\quad =n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dW_{n}\left\{ M\left( u,\varepsilon \right) \right\} \\&\qquad -n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dF\left( \varepsilon \left| u\right. \right) f\left( u\right) duW_{n}\left( 1,1\right) \end{aligned}$$

in which

$$\begin{aligned}&\left| n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dF\left( \varepsilon \left| u\right. \right) f\left( u\right) duW_{n}\left( 1,1\right) \right| \nonumber \\&\quad \le n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}\left| \varepsilon \right| dF\left( \varepsilon \left| u\right. \right) \int K_{h}\left( u-x\right) \left| r_{n}\left( u\right) \right| f\left( u\right) du\left| W_{n}\left( 1,1\right) \right| \nonumber \\&\quad \le n^{-1/2}\mathsf {E}\left| \varepsilon \right| ^{2+\eta }D_{n}^{-\left( 1+\eta \right) }{\rho }_{n}C_{f}\left| W_{n}\left( 1,1\right) \right| =U_{p}\left( n^{-1/2}D_{n}^{-\left( 1+\eta \right) }{ \rho }_{n}\right) . \qquad \end{aligned}$$
(31)

Meanwhile

$$\begin{aligned}&\mathsf {E}\left[ n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) r_{n}\left( u\right) \varepsilon dW_{n}\left\{ M\left( u,\varepsilon \right) \right\} \right] ^{2} \\&\quad =n^{-1}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x\right) ^{2}r_{n}^{2}\left( u\right) \varepsilon ^{2}dF\left( \varepsilon \left| u\right. \right) f\left( u\right) du \\&\quad =n^{-1}\int \left\{ \int _{\left| \varepsilon \right| \le D_{n}}\varepsilon ^{2}dF\left( \varepsilon \left| u\right. \right) \right\} K_{h}\left( u-x\right) ^{2}r_{n}^{2}\left( u\right) f\left( u\right) du \\&\quad \le n^{-1}\int K_{h}\left( u-x\right) ^{2}r_{n}^{2}\left( u\right) \sigma ^{2}\left( u\right) f\left( u\right) du\le n^{-1}h^{-1}{\rho } _{n}^{2}C_{\sigma }^{2}C_{f}, \end{aligned}$$

so the \(M_{n}\) Gaussian variables \(n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x_{j}\right) r_{n}\left( u\right) \varepsilon dW_{n}\left\{ M\left( u,\varepsilon \right) \right\} ,0\le j<M_{n}\) each has variance less than \(n^{-1}h^{-1}{\rho }_{n}^{2}C_{\sigma }^{2}C_{f}\), hence

$$\begin{aligned}&\underset{0\le j<M_{n}}{\max }\left| n^{-1/2}\int _{\left| \varepsilon \right| \le D_{n}}K_{h}\left( u-x_{j}\right) r_{n}\left( u\right) \varepsilon dW_{n}\left\{ M\left( u,\varepsilon \right) \right\} \right| \nonumber \\&\quad =\mathcal {O}_{p}\left( n^{-1/2}h^{-1/2}{\rho }_{n}\log ^{1/2}n\right) . \end{aligned}$$
(32)

Finally, putting together Eqs. (26), (28 ), (29), (30), (31 ) and (32) proves the Lemma.

1.2 A.2 Proof of Propositions

Proof of Proposition

1 It is obvious that \( \left| \mathrm{I}_{i,p}\right| \le 2\left\{ \tilde{m}_{p}\left( X_{i}\right) -m\left( X_{i}\right) \right\} ^{2}+2\tilde{\varepsilon }_{p}^{2}\left( X_{i}\right) .\) Meanwhile applied Lemma 1, \( \left\| m-\tilde{m}_{p}\right\| _{2,n}^{2}\le \left\| m-\tilde{m} _{p}\right\| _{\infty }^{2}=\mathcal {O}_{p}\left( H^{2p}\right) \), \( \left| \mathrm{I}\right| \) is bounded by

$$\begin{aligned}&2{n}^{-1}{h}^{-1}c^{-1}\sum \nolimits _{i=1}^{n}\left| K\left\{ (X_{i}-x)/h\right\} \right| \left\{ \left( m\left( X_{i}\right) -\tilde{m }_{p}\left( X_{i}\right) \right) ^{2}+\tilde{\varepsilon }_{p}^{2}\left( X_{i}\right) \right\} \\&\quad \le 2{h}^{-1}c^{-1}\left\| K\right\| _{\infty }\left\{ \left\| m- \tilde{m}_{p}\right\| _{2,n}^{2}+\left\| \tilde{\varepsilon } _{p}^{2}\right\| _{2,n}^{2}\right\} \\&\quad \le 2c^{-1}\left\| K\right\| _{\infty }\left\{ h^{-1}\left( H^{2p}+n^{-1}H^{-1}\right) \right\} . \end{aligned}$$

Proof of Proposition

2 By (12), \(\tilde{\varepsilon }_{p}( X_{i}) =\sum _{J=1-p}^{N}\tilde{a}_{J,p}B_{J,p}( X_{i}) \), Lemma 1 and Wang and Yang (2009) entail that \((\sum _{J=1-p}^{N}\tilde{a}_{J,p}^{2}) ^{1/2}=\mathcal {O}_{p}(\Vert \tilde{\varepsilon }_{p}(x) \Vert _{2,n}) =\mathcal {O}_{p}(n^{-1/2}N^{1/2}) \). Set \(r_{n}\left( x\right) =B_{J,p}\left( x\right) \), then Lemma 2 entails that \(\rho _{n}=\mathcal {O}\left( H^{-1/2}\right) \) and it is easy to verify that \( l_{n}=\mathcal {O}\left( H^{-3/2}\right) \). Applying Lemma 4, one obtains that

$$\begin{aligned}&{n}^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) \varepsilon _{i}B_{J,p}\left( X_{i}\right) \nonumber \\&\quad =\mathcal {U}_{p}\left( n^{-1/2}h^{-1/2}H^{-1/2}\log ^{1/2}n+n^{-1/2}h^{1/2}H^{-3/2}\right) \end{aligned}$$
(33)

and hence

$$\begin{aligned} \left| \mathrm{II}\left( x\right) \right|&= \left| {n} ^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) 2\varepsilon _{i} \tilde{\varepsilon }_{p}\left( X_{i}\right) \right| \\&= \left| 2{n}^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) \varepsilon _{i}\sum \limits _{J=1-p}^{N}\tilde{a}_{J,p}B_{J,p}\left( X_{i}\right) \right| \\&\le c^{-1}\left\{ \sum \limits _{J=1-p}^{N}\tilde{a}_{J,p}^{2}\sum \limits _{J=1-p}^{N}\left\{ 2{n}^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) \varepsilon _{i}B_{J,p}\left( X_{i}\right) \right\} ^{2}\right\} ^{1/2} \\&= \mathcal {O}_{p}\left( n^{-1/2}N^{1/2}\right) \times \left( N+p\right) ^{1/2}\\&\,\times \mathcal {U}_{p}\left( n^{-1/2}h^{-1/2}H^{-1/2}\log ^{1/2}n+n^{-1/2}h^{1/2}H^{-3/2}\right) \\&= \mathcal {U}_{p}\left( n^{-1}h^{-1/2}H^{-3/2}\log ^{1/2}n+n^{-1}h^{1/2}H^{-5/2}\right) , \end{aligned}$$

the lemma is proved.

Proof of Proposition

3

$$\begin{aligned} \mathrm{III}\left( x\right)&= 2{n}^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) \left\{ \left( m\left( X_{i}\right) -g_{p}\left( X_{i}\right) \right) \varepsilon _{i}\right\} \\&+2{n}^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) \left\{ \left( g_{p}\left( X_{i}\right) -\tilde{m}_{p}\left( X_{i}\right) \right) \varepsilon _{i}\right\} \end{aligned}$$

in which the spline function \(g_{p}\in G_{N}^{\left( p-2\right) }\) satisfies \(\left\| m-g_{p}\right\| _{\infty }\) \(\le CH^{p},m-g_{p}\in \text {Lip }\left( \left[ 0,1\right] ,CH^{p-1}\right) \) as in Lemma 1. Set \(r_{n}\left( x\right) =m\left( x\right) -g_{p}\left( x\right) \), then \(\rho _{n}=\mathcal {O}\left( H^{p}\right) ,l_{n}=\mathcal {O} \left( H^{p-1}\right) \), so applying Lemma 4 yields

$$\begin{aligned}&{n}^{-1}\sum _{i=1}^{n}K_{h}\left( X_{i}-x\right) \left\{ \left( m\left( X_{i}\right) -g_{p}\left( X_{i}\right) \right) \varepsilon _{i}\right\} \nonumber \\&\quad = \mathcal {U}_{p}\left\{ {(nh/\log n)}^{-1/2}H^{p}+n^{-1/2}h^{1/2}H^{p-1} \right\} . \end{aligned}$$
(34)

Denoting \(g_{p}\left( x\right) -\tilde{m}_{p}\left( x\right) =\sum _{J=1-p}^{N}\gamma _{J,p}B_{J,p}\left( x\right) \) and applying Lemma 1, one has

$$\begin{aligned} \left( \sum \nolimits _{J=1-p}^{N}\gamma _{J,p}^{2}\right) ^{1/2}\le C\left\| g_{p}\left( x\right) -\tilde{m}_{p}\left( x\right) \right\| _{2}=\mathcal {O}\left( H^{p}\right) , \end{aligned}$$

which, together with (33) imply that

$$\begin{aligned}&\left| 2{n}^{-1}\sum \limits _{i=1}^{n}K_{h}\left( X_{i}-x\right) \left\{ g_{p}\left( X_{i}\right) -\tilde{m}_{p}\left( X_{i}\right) \right\} \varepsilon _{i}\right| \\&\quad =\left| 2{n}^{-1}\sum \limits _{J=1-p}^{N}\gamma _{J,p}\sum \nolimits _{i=1}^{n}K_{h}\left( X_{i}-x\right) B_{J,p}\left( X_{i}\right) \varepsilon _{i}\right| \\&\quad \le \left( \sum \limits _{J=1-p}^{N}\gamma _{J,p}^{2}\right) ^{1/2}\left[ \sum \limits _{J=1-p}^{N}\left\{ 2{n}^{-1}\sum \nolimits _{i=1}^{n}K_{h}\left( X_{i}-x\right) B_{J,p}\left( X_{i}\right) \varepsilon _{i}\right\} ^{2} \right] ^{1/2} \\&\quad =\mathcal {O}\left( H^{p}\right) \times \mathcal {O}\left( N^{1/2}\right) \times \mathcal {U}_{p}\left( n^{-1/2}h^{-1/2}H^{-1/2}\log ^{1/2}n+n^{-1/2}h^{1/2}H^{-3/2}\right) \\&\quad =\mathcal {U}_{p}\left( n^{-1/2}h^{-1/2}H^{p-1}\log ^{1/2}n+n^{-1/2}h^{1/2}H^{p-2}\right) , \end{aligned}$$

which, together with (34), prove the lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Yang, L. A smooth simultaneous confidence band for conditional variance function. TEST 24, 632–655 (2015). https://doi.org/10.1007/s11749-015-0427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-015-0427-5

Keywords

Mathematics Subject Classification

Navigation