Skip to main content
Log in

Auto-association measures for stationary time series of categorical data

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

For stationary time series of nominal categorical data or ordinal categorical data (with arbitrary ordered numberings of the categories), autocorrelation does not make much sense. Biswas and Guha (J Stat Plan Infer 139:3076–3087, 2009a) used mutual information as a measure of association and introduced the concept of auto-mutual information in this context. In this present paper, we introduce general auto-association measures for this purpose and study several special cases. Theoretical properties and simulation results are given along with two illustrative real data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A (2013) Categorical data analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Ali SM, Silvey SD (1966) A general class of coefficients of divergence of one distribution from another. J Royal Stat Soc B 28:131–142

    Google Scholar 

  • Bagnato L, Punzo A, Nicolis O (2012) The autodependogram: a graphical device to investigate serial dependences. J Time Series Anal 33:233–254

    Article  MathSciNet  Google Scholar 

  • Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. MIT Press, Cambridge

    MATH  Google Scholar 

  • Biswas A, Guha A (2009a) Time series analysis of categorical data using auto-mutual information. J Stat Plan Infer 139:3076–3087

    Article  MATH  MathSciNet  Google Scholar 

  • Biswas A, Guha A (2009b) Time Series of categorical data using auto-mutual information with application of fitting an AR (2) model. Adv Mult Stat Method 4:421

    Article  MathSciNet  Google Scholar 

  • Biswas A, Song PXK (2009) Discrete-valued ARMA processes. Stat Probab Lett 79:1884–1889

    Article  MATH  MathSciNet  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis forecasting and control. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Cover T, Thomas J (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  • Cressie N, Read TRC (1984) Multinomial goodness-of-fit tests. J Roy Stat Soc B 46:440–464

    MATH  MathSciNet  Google Scholar 

  • Csiszár I (1963) Eine Informationtheorestiche Ungleichung und ihre Anwendung anf den Beweis der Ergodizitt Markoffshen Ketten. Publ Math Inst Hungarian Acad Sci A 8:84–108

    Google Scholar 

  • Fernandes M, Néri B (2009) Nonparametric entropy-based tests of independence between stochastic processes. Economet Rev 29:276–306

    Article  Google Scholar 

  • Goodman LA, Kruskal WH (1954) Measures of association for cross classifications: part I. J Am Stat Assoc 49:732–764

    MATH  Google Scholar 

  • Guha A (2005) Analysis of dependence structures of hybrid stochastic processes using mutual information. Dissertation, University of California, Berkeley.

  • Havrda J, Charvát F (1967) Quantification method of classification processes. Concept of structural \(\alpha \)-entropy. Kybernetika 3:30–35

    Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobs PA, Lewis PAW (1978a) Discrete time series generated by mixtures I: correlational and runs properties. J Roy Stat Soc B 40:94–105

    MATH  MathSciNet  Google Scholar 

  • Jacobs PA, Lewis PAW (1978b) Discrete time series generated by mixtures II: asymptotic properties. J Roy Stat Soc B 40:222–228

    MATH  MathSciNet  Google Scholar 

  • Jacobs PA, Lewis PAW (1978) Discrete time series generated by mixtures III: autoregressive processes (DAR(p)). Naval Postgrad Sch Tech. Report NPS55-78-022

  • Jacobs PA, Lewis PAW (1983) Stationary discrete autoregressive-moving average time series generated by mixtures. J Time Series Anal 4:19–36

    Article  MATH  MathSciNet  Google Scholar 

  • Kullback S (1985) Kullback information. In: Kotz S, Johnson NL (eds) Encyclopaedia of statistical sciences, vol 4. Wiley, New York, pp 421–425

    Google Scholar 

  • Latour A (1998) Existence and stochastic structure of a non-negative integer-valued autoregressive process. J Time Series Anal 19:439–455

    Article  MATH  MathSciNet  Google Scholar 

  • Maiti R, Biswas A, Guha A, Ong SH (2013) Modelling and coherent forecasting of zero-inflated time series count data. Stat Model, To appear

  • Pardo JA, Pardo L, Pardo MC (2006a) Minimum \(\Phi \)-divergence estimator in logistic regression models. Stat Pap 47:91–108

    Article  MATH  MathSciNet  Google Scholar 

  • Pardo JA, Pardo L, Pardo MC (2006b) Testing in logistic regression models based on \(\Phi \)-divergence measures. J Stat Plan Infer 136:982–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Pegram GGS (1975) A multinomial model for transition probability matrices. J Appl Probab 12:498–506

    Article  MATH  MathSciNet  Google Scholar 

  • Pegram GGS (1980) An autoregressive model for multilag Markov chains. J Appl Probab 17:350–362

    Article  MATH  MathSciNet  Google Scholar 

  • Raftery AE (1985) A model for high-order Markov chains. J Roy Stat Soc B 47:528–539

    MATH  MathSciNet  Google Scholar 

  • Stoffer DS (1985) Central limit theorems for finite Walsh–Fourier transforms of weakly stationary time series. J Time Series Anal 6:261–267

    Article  MATH  MathSciNet  Google Scholar 

  • Stoffer DS (1987) Walsh–Fourier analysis of discrete-valued time series. J Time Series Anal 8:449–467

    Article  MATH  MathSciNet  Google Scholar 

  • Stoffer DS, Scher MS, Richardson GA, Day NL, Coble PA (1988) A Walsh–Fourier analysis of the effects of moderate maternal alcohol consumption on neonatal sleep-state cycling. J Am Stat Assoc 83:954–963

    Google Scholar 

  • Stoffer DS, Tyler DE, Wendt DA (2000) The spectral envelope and its applications. Stat Sci 15:224–253

    Article  MATH  MathSciNet  Google Scholar 

  • Vajda I (1989) Theory of statistical inference and information. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Weiß CH (2011) Empirical measures of signed serial dependence in categorical time series. J Stat Comput Sim 81:411–429

    Article  MATH  Google Scholar 

  • Weiß CH (2013) Serial dependence of NDARMA processes. Comput Stat Data Anal 68:213–238

    Article  Google Scholar 

  • Weiß CH, Göb R (2008) Measuring serial dependence in categorical time series. Adv Stat Anal 92:71–89

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank three anonymous referees for their many helpful comments and for pointing us to several important references which have lead to significant improvement in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, A., del Carmen Pardo, M. & Guha, A. Auto-association measures for stationary time series of categorical data. TEST 23, 487–514 (2014). https://doi.org/10.1007/s11749-014-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-014-0364-8

Keywords

Mathematics Subject Classfication (2010)

Navigation