Skip to main content
Log in

Estimation of a probability in inverse binomial sampling under normalized linear-linear and inverse-linear loss

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Sequential estimation of the success probability p in inverse binomial sampling is considered in this paper. For any estimator \(\hat{p}\), its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters a and b for \(\hat{p}< p\) and \(\hat{p}> p\), respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as p→0, and which guarantee that, for any p∈(0,1), the risk is lower than its asymptotic value. This allows selecting the required number of successes, r, to meet a prescribed quality irrespective of the unknown p. In addition, the proposed estimators are shown to be approximately minimax when a/b does not deviate too much from 1, and asymptotically minimax as r→∞ when a=b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds) (1970) Handbook of mathematical functions, 9th edn. Dover, New York

    Google Scholar 

  • Adell JA, Jodrá P (2005) The median of the Poisson distribution. Metrika 61:337–346

    Article  MathSciNet  MATH  Google Scholar 

  • Akdeniz F (2004) New biased estimators under the linex loss function. Stat Pap 45:175–190

    Article  MathSciNet  MATH  Google Scholar 

  • Alm SE (2003) Monotonicity of the difference between median and mean of gamma distributions and of a related Ramanujan sequence. Bernoulli 9(2):351–371

    Article  MathSciNet  MATH  Google Scholar 

  • Alvo M (1977) Bayesian sequential estimation. Ann Stat 5(5):955–968

    Article  MathSciNet  MATH  Google Scholar 

  • Apostol TM (1974) Mathematical analysis, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Baran J, Magiera R (2010) Optimal sequential estimation procedures of a function of a probability of success under LINEX loss. Stat Pap 51(3):511–529

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Best DJ (1974) The variance of the inverse binomial estimator. Biometrika 61(2):385–386

    Article  MathSciNet  MATH  Google Scholar 

  • Cabilio P (1977) Sequential estimation in Bernoulli trials. Ann Stat 5(2):342–356

    Article  MathSciNet  MATH  Google Scholar 

  • Cabilio P, Robbins H (1975) Sequential estimation of p with squared relative error loss. Proc Natl Acad Sci USA 72(1):191–193

    Article  MathSciNet  MATH  Google Scholar 

  • Christoffersen PF, Diebold FX (1997) Optimal prediction under asymmetric loss. Econom Theory 13:808–817

    Article  MathSciNet  Google Scholar 

  • DeGroot MH (1959) Unbiased sequential estimation for binomial populations. Ann Math Stat 30(1):80–101

    Article  MathSciNet  MATH  Google Scholar 

  • Girshick MA, Mosteller F, Savage LJ (1946) Unbiased estimates for certain binomial sampling problems with applications. Ann Math Stat 17(1):13–23

    Article  MathSciNet  MATH  Google Scholar 

  • Granger CWJ (1969) Prediction with a generalized cost of error function. Oper Res Q 20(2):199–207

    Article  MathSciNet  MATH  Google Scholar 

  • Haldane JBS (1945) On a method of estimating frequencies. Biometrika 33(3):222–225

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert SL, Pyke R (2000) Sequential estimation of functions of p for Bernoulli trials. In: Game theory, optimal stopping, probability and statistics. Institute of Mathematical Statistics, pp 263–294

  • Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Mendo L (2009) Estimation of a probability with guaranteed normalized mean absolute error. IEEE Commun Lett 13(11):817–819

    Article  Google Scholar 

  • Mendo L (2010) Asymptotically optimum estimation of a probability in inverse binomial sampling. J Stat Plan Inference, submitted. ArXiv:1001.3084v1 [math.ST]

  • Mendo L, Hernando JM (2006) A simple sequential stopping rule for Monte Carlo simulation. IEEE Trans Commun 54(2):231–241

    Article  Google Scholar 

  • Mendo L, Hernando JM (2008) Improved sequential stopping rule for Monte Carlo simulation. IEEE Trans Commun 56(11):1761–1764

    Article  Google Scholar 

  • Mendo L, Hernando JM (2010) Estimation of a probability with optimum guaranteed confidence in inverse binomial sampling. Bernoulli 16(2):493–513

    Article  MathSciNet  MATH  Google Scholar 

  • Mikulski PW, Smith PJ (1976) A variance bound for unbiased estimation in inverse sampling. Biometrika 63(1):216–217

    Article  MathSciNet  MATH  Google Scholar 

  • Sathe YS (1977) Sharper variance bounds for unbiased estimation in inverse sampling. Biometrika 64(2):425–426

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Mendo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendo, L. Estimation of a probability in inverse binomial sampling under normalized linear-linear and inverse-linear loss. TEST 21, 656–675 (2012). https://doi.org/10.1007/s11749-011-0267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-011-0267-x

Keywords

Mathematics Subject Classification (2000)

Navigation