Skip to main content
Log in

Automatic spectral density estimation for random fields on a lattice via bootstrap

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We consider the nonparametric estimation of spectral densities for second-order stationary random fields on a d-dimensional lattice. We discuss some drawbacks of standard methods and propose modified estimator classes with improved bias convergence rate, emphasizing the use of kernel methods and the choice of an optimal smoothing number. We prove the uniform consistency and study the uniform asymptotic distribution when the optimal smoothing number is estimated from the sampled data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramenko V, Yurchyshyn V, Wang H, Goode PR (2001) Magnetic power spectra derived from ground and space measurements of the solar magnetic fields. Sol Phys 201:225–240

    Article  Google Scholar 

  • Agterberg FP (1967) Computer techniques in geology. Earth Sci Rev 3:47–77

    Article  Google Scholar 

  • Barry RG, Perry A (1973) Synoptic climatology. Methuen, London

    Google Scholar 

  • Beltrao KI, Bloomfield P (1987) Determining the bandwith of a kernel spectrum estimate. J Time Ser Anal 15:383–400

    MathSciNet  Google Scholar 

  • Bickel PJ, Wichura MJ (1971) Convergence criteria for multiparameter stochastic processes and some applications. Ann Math Stat 42:1656–1670

    Article  MATH  MathSciNet  Google Scholar 

  • Bolthausen E (1982) On the CLT for stationary mixing random fields. Ann Probab 10:1047–1050

    Article  MATH  MathSciNet  Google Scholar 

  • Brillinger DR (1970) The frequency analysis of relations between stationary spatial series. In: Pyke R (ed) Proceedings of the 12th biennial seminar on time series, stochastic processes, convexity and combinatorics. Canadian Math. Congress, Montreal, pp 39–81

  • Brillinger DR (1981) Time series, data analysis and theory. Holden Day, San Francisco

    MATH  Google Scholar 

  • Dalhaus R, Künsch H (1987) Edge effects and efficient parameter estimation for stationary random fields. Biometrika 74:877–882

    Article  MathSciNet  Google Scholar 

  • Delgado M, Vidal-Sanz JM (2001) Averaged singular integral estimation as bias reduction technique. J Multivar Anal 80:127–137

    Article  MathSciNet  Google Scholar 

  • Doukhan P (1994) Mixing. Properties and examples. Springer, New York

    MATH  Google Scholar 

  • Frank J, Härdle W (1992) On bootstrapping kernel spectral estimates. Ann Stat 20:121–145

    Article  Google Scholar 

  • Guyon X (1982) Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika 69:95–105

    MATH  MathSciNet  Google Scholar 

  • Hannan EJ (1970) Multiple time series. Wiley, New York

    Book  MATH  Google Scholar 

  • Hannan EJ (1973) The asymptotic theory of linear time-series models. J Appl Probab 10:130–145

    Article  MATH  MathSciNet  Google Scholar 

  • Heyde CC, Gay R (1993) Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence. Stoch Process Appl 45:169–182

    Article  MATH  MathSciNet  Google Scholar 

  • Ivanov AV, Leonenko NN (1986) Statistical analysis of random fields. Mathematics and its applications, Soviet subseries. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Korovkin PP (1960) Linear operators and approximation theory. Hindustan Publ. Corp., Delhi

    Google Scholar 

  • Leonenko N (1999) Limit theorems for random fields with singular spectrum. Mathematics and its applications, vol. 465. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Politis DN, Romano JP (1996) On flat-top kernel spectral density estimators for homogeneous random fields. J Stat Plan Inference 51:41–53

    Article  MATH  MathSciNet  Google Scholar 

  • Priestley MB (1964) The analysis of a two-dimensional stationary process with discontinuous spectra. Biometrika 51:195–217

    MATH  MathSciNet  Google Scholar 

  • Reshaw E (1984) Competition experiments in a plant monoculture: an analysis based on two dimensional spectra. Biometrics 40:717–728

    Article  Google Scholar 

  • Reshaw E, Ford ED (1983) The interpretation of process from pattern using two dimensional spectral analysis: methods and problems of interpretation. Appl Stat 32:51–63

    Article  Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. An essay awarded the Adams Prize of the University of Cambridge. Cambridge University Press, Cambridge

    Google Scholar 

  • Robinson PM (1991) Automatic frequency domain inference on semiparametric and nonparametric models. Econometrica 59:1329–1363

    Article  MATH  MathSciNet  Google Scholar 

  • Robinson PM (2007) Nonparametric spectrum estimation for spatial data. Special Issue in honour of Madam L. Puri. J Stat Plan Inference 137:1024–1034

    Article  MATH  Google Scholar 

  • Robinson PM, Vidal-Sanz JM (2006) Modified whittle estimation of multilateral models on a lattice. J Multivar Anal 97:1090–1120

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenblatt (1985) Stationary sequences and random fields. Birkhäuser, Boston

    MATH  Google Scholar 

  • Rozanov YA (1967) Stationary random process. Holden Day, San Francisco

    Google Scholar 

  • Rudin W (1974) Real and complex analysis, 2nd edn. McGraw–Hill, New York

    MATH  Google Scholar 

  • Vidal-Sanz JM (2005) Pointwise universal consistency of nonparametric linear estimators. Bernoulli 11(4):1–15

    MathSciNet  Google Scholar 

  • Vidal-Sanz JM (2007) Automatic spectral density estimation for random fields on a lattice via bootstrap. Working paper 07-26, business economics, Universidad Carlos III de Madrid, http://e-archivo.uc3m.es:8080/dspace/bitstream/10016/680/1/wb072606.pdf

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41:434–449

    MATH  MathSciNet  Google Scholar 

  • Zygmund A (1959) Trigonometric series, vols I and II combined, 2nd edn. Cambridge mathematical library. Cambridge University Press, Cambridge

    Google Scholar 

  • Žurbenko IG (1986) The spectral analysis of time series. North Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Vidal-Sanz.

Additional information

I wish to thank Professor C. Velasco and two anonymous referees for their helpful comments and suggestions and Professor P.M. Robinson for introducing me with the topic. This research has been supported by a Marie Curie Grant, Mobility 11, of the European Commission, reference number FP6-2004-505469.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal-Sanz, J.M. Automatic spectral density estimation for random fields on a lattice via bootstrap. TEST 18, 96–114 (2009). https://doi.org/10.1007/s11749-007-0059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-007-0059-5

Keywords

Mathematics Subject Classification (2000)

Navigation