Skip to main content
Log in

Synthesis of Fatty Acetoacetates Under Microwave Irradiation Catalysed by Sulfamic Acid in a Solvent-Free System

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The 1,3-dicarbonyl compounds are important building blocks to obtain products with various biological activities and technological applications. In this work, we used a simple transesterification method to develop fatty acetoacetates in a solvent-free medium using a green catalyst, sulfamic acid (NH2SO3H), under microwave irradiation. The experimental results demonstrate good yields in a short reaction time (13 min), which makes this method an efficient approach to synthesize fatty acetoacetates from a wide range of saturated, unsaturated, and polyunsaturated long chain fatty alcohols, and ricinoleic derivatives. Experiments of recycling of the catalyst were performed and no decrease in catalytic activity of sulfamic acid was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  1. Koizumi T, Sakamoto J, Gondo Y, Endo T (2002) Pd(0)-Catalyzed polyaddition of bifunctional vinyloxiranes with 1,3-dicarbonyl compounds: the synthesis of polymers containing hydroxyl and carbonyl groups. J Polym Sci Part A Polym Chem 40:2487–2494

    Article  CAS  Google Scholar 

  2. Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery ‘from xylocaine to crixivan’. Curr Med Chem 10:51–80

    Article  CAS  Google Scholar 

  3. Touré BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486

    Article  Google Scholar 

  4. Cao L, Wang J, Liu K, Han S (2014) Ethyl acetoacetate: a potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil. Appl Energy 114:18–21

    Article  CAS  Google Scholar 

  5. Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley-VCH Publishing, Weinheim

    Book  Google Scholar 

  6. Treptow TGM, Figueiró F, Jandrey EHF, Battastini AMO, Salbego CG, Hoppe JB, Taborda PS, Rosa SB, Piovesan LA, D’Oca CRM, Russowsky D, D’Oca MGM (2015) Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth in vitro. Eur J Med Chem 95:552–562

    Article  CAS  Google Scholar 

  7. Liu L, Sarkisian R, Deng Y, Wang H (2013) Sc(OTf)3-Catalyzed Three component cyclization of arylamines β, γ-unsaturated α-ketoesters, and 1,3-dicarbonyl compounds for the synthesis of highly substituted 1,4-dihydropyridines and tetrahydropyridines. J Org Chem 78:5751–5755

    Article  CAS  Google Scholar 

  8. Russowsky D, Canto RFS, Sanches SAA, D’Oca MGM, Fátima A, Pilli RA, Konhn LK, Antônio MA, Carvalho JE (2006) Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg Chem 34:173–182

    Article  CAS  Google Scholar 

  9. Crespo A, El Maatougui A, Biagini P, Azuaje J, Coelho A, Brea J, Loza MI, Cadavid MI, Garcia-Mera X, Gutierrez-de-Teran H, Sotelo E (2013) Discovery of 3,4-dihydropyrimidin-2(1H)-ones as a novel class of potent and selective A2B adenosine receptor antagonists. ACS Med Chem Lett 4:1031–1036

    Article  CAS  Google Scholar 

  10. Bonne D, Coquerel Y, Constantieux T, Rodriguez J (2010) 1,3-Dicarbonyl compounds in stereoselective domino and multicomponent reactions. Tetrahedron Asymm 21:1085–1109

    Article  CAS  Google Scholar 

  11. Cioc RC, Ruijterand E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975

    Article  CAS  Google Scholar 

  12. Koval KLI, Dzyuba VI, Ilnitska OL, Pekhnyo VI (2008) Efficient transesterification of ethyl acetoacetate with higher alcohols without catalysts. Tetrahedron Lett 49:1645–1648

    Article  CAS  Google Scholar 

  13. Heravi MM, Baghernejad B, Oskooie HA (2009) Application of sulfamic acid in organic synthesis—a short review. Curr Org Chem 13:1002–1014

    Article  CAS  Google Scholar 

  14. Sathicq G, Musante L, Romanelli G, Pasquale G, Autino J, Thomas H, Vazquez P (2008) Transesterification of β-ketoesters catalyzed by hybrid materials based on silica sol-gel. Catal Today 133:455–460

    Article  Google Scholar 

  15. Mhasni O, Rezgui F (2011) The first Et3N-mediated transesterifications of β-keto esters using Baylis & Hillman alcohols. Tetrahedron 67:6322–6326

    Article  CAS  Google Scholar 

  16. Kondaiah GCM, Reddy LA, Babu KS, Gurav VM, Huge KG, Bandichhor R, Reddy PP, Bhattacharya A, Anand RV (2008) Boric acid: and efficient and environmentally benign catalyst for transesterification of ethyl acetoacetate. Tetrahedron Lett 49:106–109

    Article  CAS  Google Scholar 

  17. Yadav JS, Reddy BVS, Krishna AD, Reddy CS, Narsaiah AV (2007) Triphenylphosphine: an efficient catalyst for transesterification of β-ketoesters. J Mol Catal A Chem 261:93–97

    Article  CAS  Google Scholar 

  18. Loupy ACR (2004) Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. Chim 7:103–112

    Article  CAS  Google Scholar 

  19. Rao GBD, Acharya BN, Kaushik MP (2013) An efficient synthesis of β-ketoesters via transesterification and its application in Biginelli reaction under solvent-free, catalyst-free conditions. Tetrahedron Lett 54:6644–6647

    Article  Google Scholar 

  20. Wang B, Yang LM, Shuan SJ (2003) Ionic liquid-regulated sulfamic acid: chemoselective catalyst for the transesterification of β-ketoesters. Tetrahedron Lett 44:5037–5039

    Article  CAS  Google Scholar 

  21. Wisniewska C, Koszelewski D, Zysk M, Klossowski S, Zadlo A, Brodzka A, Ostaszewski R (2015) Enzymatic synergism in the synthesis of β-keto esters. Eur J Org Chem 24:5432–5437

    Article  Google Scholar 

  22. Cordova A, Janda KD (2001) A highly chemo and stereoselective synthesis of β-keto esters via a polymer-supported lipase catalyzed transesterfication. J Org Chem 66:1906–1909

    Article  CAS  Google Scholar 

  23. Jin TS, Sun G, Li YW, Li TS (2002) An efficient and convenient procedure for the preparation of 1,1-diacetates form aldehydes catalyzed by H2NSO3H. Green Chem 4:255–256

    Article  CAS  Google Scholar 

  24. Rostami A, Ahmad-Jangi F (2011) Sulfamic acid: an efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free. Chin Chem Lett 22:1029–1032

    Article  CAS  Google Scholar 

  25. Wang B (2005) Sulfamic Acid: a very useful catalyst. Synlett 8:1342–1343

    Article  Google Scholar 

  26. Darabi HR, Mohandessi S, Aghapoor K, Mohsenzadeh F (2007) A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature. Catal Commun 8:389–392

    Article  CAS  Google Scholar 

  27. Zhang ZH, Li TS, Li J (2007) A highly effective sulfamic acid/methanol catalytic system for the synthesis of benzimidazole derivatives at room temperature. J Mon Chem 138:89–94

    Article  CAS  Google Scholar 

  28. Rostami A, Tavakoli A (2011) Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chin Chem Lett 22:1317–1320

    Article  CAS  Google Scholar 

  29. Li JP, Qiu JK, Li HJ, Zhang GS (2011) An efficient, three-component one-pot preparation of 1,4-dihydropyridines containing novel substituted pyrazole under sulfamic acid catalysis. Chin J Chem 29:511–514

    Article  CAS  Google Scholar 

  30. Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH Publishing, Weinheim

    Book  Google Scholar 

  31. Madhav JV, Kumar VN, Rajitha B (2008) Sulfamic acid-catalyzed one-pot synthesis of 3-(4,6-dimethyl-oxazolo[4,5-c]quinolin-2-yl)-chromen-2-ones using the conventional method and microwave irradiation. Synth Commun 38:1799–1807

    Article  CAS  Google Scholar 

  32. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  33. Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41:629–639

    Article  CAS  Google Scholar 

  34. Lindstrom P, Tierney J, Wathey B, Westman J (2002) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283

    Article  Google Scholar 

  35. Ranu BC, Saha A, Jana R (2007) Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl-sulfur bond formation. Adv Synth Catal 349:2690–2696

    Article  CAS  Google Scholar 

  36. Brinkerhoff RC, Fontecha-Tarazona HD, de Oliveira PM, Flores DC, D’Oca CRM, Russowsky D, D’Oca MGM (2014) Synthesis of β-ketoesters from renewable resources and Meldrum’s acid. RSC Adv 4:49556–49559

    Article  CAS  Google Scholar 

  37. Rodrigues MO, Cantos JB, D’Oca CRM, Soares KL, Coelho TS, Piovesan LA, Russowsky D, da Silva PA, D’Oca MGM (2013) Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids. Bioorg Med Chem 21:6910–6914

    Article  CAS  Google Scholar 

  38. D’Oca CRM, Coelho T, Marinho TG, Hack CRL, Duarte RC, da Silva PA, D’Oca MGM (2010) Synthesis and antituberculosis activity of new fatty acid amides. Bioorg Med Chem Lett 20:5255–5257

    Article  Google Scholar 

  39. Duarte RC, Ongaratto R, Piovesan LA, de Lima VR, Soldi V, Merlo AA, D’Oca MGM (2012) New N-acylamino acids and derivatives from renewable fatty acids: gelation of hydrocarbons and thermal properties. Tetrahedron Lett 53:2454–2460

    Article  CAS  Google Scholar 

  40. dos Santos DS, Piovesan LA, D’Oca CRM, Hack CRL, Treptow TGM, Rodrigues MO, Vendramini-Costa DB, Ruiz ALTG, de Carvalho JE, D’Oca MGM (2015) Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorg Med Chem 23:340–347

    Article  Google Scholar 

  41. D’Oca MGM, Soares RM, Moura RR, Granjão VF (2012) Sulfamic acid: an efficient acid catalyst for esterification of FFA. Fuel 97:884–886

    Article  Google Scholar 

  42. Brown HC, Krishnamurthy S (1979) Forty years of hydride reductions. Tetrahedron 35:567–607

    Article  CAS  Google Scholar 

  43. Wang X, Li X, Xue J, Zhao Y, Zhang Y (2009) A novel and efficient procedure for the preparation of allylic alcohols from α-β-unsaturated carboxylic esters using LiAlH4/BnCl. Tetrahedron Lett 50:413–415

    Article  CAS  Google Scholar 

  44. Lakshminarayana G, Paulose MM, Kumari NB (1984) Characteristics and composition of newer varieties of Indian castor seed and oil. J Am Oil Chem Soc 61:1871–1872

    Article  CAS  Google Scholar 

  45. Lopes CR, D’Oca CRM, Duarte RC, Kurz MHS, Primel EG, Clementin RM, Villarreyes JAM, D’Oca MGM (2010) Síntese de novas amidas graxas a partir da aminólise de ésteres metílicos. Quim Nova 33:1335–1341

    Article  CAS  Google Scholar 

  46. Mhasni O, Erray I, Rezgui F (2014) General and efficient transesterification of β-keto esters with various alcohols using Et3N as a change by Brønsted base additive. Synt Comm 44:3320–3327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEM), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Fellowships from CAPES (A. C. H. Weber) and CNPq (D. Russowsky and M. G. Montes D’Oca) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo G. Montes D’Oca.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5581 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, A.C.H., Batista, T.C., Gonçalves, B. et al. Synthesis of Fatty Acetoacetates Under Microwave Irradiation Catalysed by Sulfamic Acid in a Solvent-Free System. J Am Oil Chem Soc 93, 1399–1406 (2016). https://doi.org/10.1007/s11746-016-2879-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2879-5

Keywords

Navigation