Skip to main content
Log in

Oil-Fat Mixtures with Low Solid Fat Concentration: Influence of Fat Concentration and Cooling Conditions

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Uniform suspension of particulates (salt or spices) in oil-based marinades requires a gel behavior of the matrix. This can be achieved by adding a solid fat to the liquid oil. Besides rheology, appearance and thermal stability are important for the utilization as marinades. The influence of solid fat concentration (c fat = 2.5–5.5 wt%) and average cooling speed (1.4, 2.6, and 4.7 °C/min) on the functional properties of oil-fat gels from palm fat and canola oil was investigated. Oil-fat mixtures showed complex physiochemical behavior depending on the solid fat concentration and cooling rate. All samples had a shear-thinning behavior. Yield stresses and apparent viscosities increased at a constant cooling rate with increasing solid fat concentration. Frequency dependence of storage and loss modulus showed a transition from a viscous solution to a weak gel at c fat > 3.5 wt%. Samples at increasing cooling rates transitioned to weak gels at lower fat concentration (2.5 wt%). Mixtures became turbid and increasingly whiter as both solid fat concentration and cooling rates increased, which was explained by increased light-scattering by fat crystal aggregates. Results show the critical importance of proper formulation and preparation conditions on the functionality of oil-based marinades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yusop SM, O’Sullivan MG, Kerry JP (2011) Marinating and Enhancement of the Nutritional Content of Processed Meat Products. In: Kerry JP, Kerry JF (eds) Processed Meats: Improving Safety, Nutrition and Quality. Woodhead Publishing, Cambridge, pp 421–449

    Chapter  Google Scholar 

  2. Feiner G (2006) Meat Products Handbook: Practical Science and Technology. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  3. McEvoy JH (2003) The Might of Marinades. Prepared Foods 172:49–58

    Google Scholar 

  4. Xiong YL, Mikel WB (2001) Meat and Meat Products. In: Hui YH, Nip W-K, Rogers RW, Young OA (eds) Meat Science and Applications. Marcel Dekker, New York, pp 351–370

    Google Scholar 

  5. Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of Edible Oils by Alternatives to Crystalline Fat. Curr Opin Colloid Interface Sci 12:221–231

    Article  CAS  Google Scholar 

  6. Vintiloiu A, Leroux J-C (2008) Organogels and Their Use in Drug Delivery—a Review. J Controlled Release 125:179–192

    Article  CAS  Google Scholar 

  7. Bot A, Veldhuizen YSJ, den Adel R, Roijers EC (2009) Non-Tag Structuring of Edible Oils and Emulsions. Food Hydrocolloids 23:1184–1189

    Article  CAS  Google Scholar 

  8. Rogers MA (2009) Novel Structuring Strategies for Unsaturated Fats—Meeting the Zero-Trans, Zero-Saturated Fat Challenge: A Review. Food Res Int 42:747–753

    Article  CAS  Google Scholar 

  9. Co ED, Marangoni AG (2012) Organogels: An Alternative Edible Oil-Structuring Method. J Am Oil Chem Soc 89:749–780

    Article  Google Scholar 

  10. Narine SS, Marangoni AG (1999) Relating Structure of Fat Crystal Networks to Mechanical Properties: A Review. Food Res Int 32:227–248

    Article  CAS  Google Scholar 

  11. Kloek W, Walstra P, Vliet T (2000) Nucleation Kinetics of Emulsified Triglyceride Mixtures. J Am Oil Chem Soc 77:643–652

    Article  CAS  Google Scholar 

  12. Kloek W, van Vliet T, Walstra P (2005) Mechanical Properties of Fat Dispersions Prepared in a Mechanical Crystallizer. J Texture Stud 36:544–568

    Article  Google Scholar 

  13. Walstra P (2003) Physical Chemistry of Foods. Marcel Dekker, New York

    Google Scholar 

  14. Vreeker R, Hoekstra LL, den Boer DC, Agterof WGM (1992) The Fractal Nature of Fat Crystal Networks. Colloids and Surf 65:185–189

    Article  CAS  Google Scholar 

  15. Van den Tempel M (1961) Mechanical Properties of Plastic-Disperse Systems at Very Small Deformations. J Colloid Sci 16:284–296

    Article  Google Scholar 

  16. Tang D, Marangoni AG (2006) Quantitative Study on the Microstructure of Colloidal Fat Crystal Networks and Fractal Dimensions. Adv Colloid Interface Sci 128–130:257–265

    Article  Google Scholar 

  17. Marangoni AG, Tang D (2008) Modeling the Rheological Properties of Fats: A Perspective and Recent Advances. Food Biophys 3:113–119

    Article  Google Scholar 

  18. Kloek W, van Vliet T, Walstra P (2005) Large Deformation Behavior of Fat Crystal Networks. J Texture Stud 36:516–543

    Article  Google Scholar 

  19. Acevedo NC, Marangoni AG (2010) Characterization of the Nanoscale in Triacylglycerol Crystal Networks. Cryst Growth Des 10:3327–3333

    Article  CAS  Google Scholar 

  20. Acevedo NC, Marangoni AG (2010) Toward Nanoscale Engineering of Triacylglycerol Crystal Networks. Cryst Growth Des 10:3334–3339

    Article  CAS  Google Scholar 

  21. Acevedo NC, Peyronel F, Marangoni AG (2011) Nanoscale Structure Intercrystalline Interactions in Fat Crystal Networks. Curr Opin Colloid Interface Sci 16:374–383

    Article  CAS  Google Scholar 

  22. Kamphuis H, Jongschaap RJJ (1985) The Rheological Behaviour of Suspensions of Fat Particles in Oil Interpreted in Terms of a Transient-Network Model. Colloid Polym Sci 263:1008–1024

    Article  CAS  Google Scholar 

  23. Papenhuijzen JMP (1972) The Role of Particle Interactions in the Rheology of Dispersed Systems. Rheol Acta 11:73–88

    Article  CAS  Google Scholar 

  24. Sherman P (1968) The influence of particle size on the viscoelastic properties of flocculated emulsions. 5th International Conference on Rheology, Kyoto, Japan, pp. 327–338

  25. Marangoni AG, Rousseau D (1996) Is Plastic Fat Rheology Governed by the Fractal Nature of the Fat Crystal Network? J Am Oil Chem Soc 73:991–994

    Article  CAS  Google Scholar 

  26. Campos R, Narine SS, Marangoni AG (2002) Effect of Cooling Rate on the Structure and Mechanical Properties of Milk Fat and Lard. Food Res Int 35:971–981

    Article  CAS  Google Scholar 

  27. Pérez-Martínez D, Alvarez-Salas C, Charó-Alonso M, Dibildox-Alvarado E, Toro-Vazquez JF (2007) The Cooling Rate Effect on the Microstructure and Rheological Properties of Blends of Cocoa Butter with Vegetable Oils. Food Res Int 40:47–62

    Article  Google Scholar 

  28. Pérez-Martínez D, Alvarez-Salas C, Morales-Rueda JA, Toro-Vazquez JF, Charó-Alonso M, Dibildox-Alvarado E (2005) The Effect of Supercooling on Crystallization of Cocoa Butter-Vegetable Oil Blends. J Am Oil Chem Soc 82:471–479

    Article  Google Scholar 

  29. DeMan JM (1964) Effect of Cooling Procedures on Consistency, Crystal Structure and Solid Fat Content of Milk Fat. Dairy Ind 29:244–246

    Google Scholar 

  30. Awad TS, Rogers MA, Marangoni AG (2004) Scaling Behavior of the Elastic Modulus in Colloidal Networks of Fat Crystals. J Phys Chem B 108:171–179

    Article  CAS  Google Scholar 

  31. Higaki K, Sasakura Y, Koyano T, Hachiya I, Sato K (2003) Physical Analyses of Gel-Like Behavior of Binary Mixtures of High- and Low-Melting Fats. J Am Oil Chem Soc 80:263–270

    Article  CAS  Google Scholar 

  32. Higaki K, Koyano T, Hachiya I, Sato K (2004) In Situ Optical Observation of Microstructure of β-Fat Gel Made of Binary Mixtures of High-Melting and Low-Melting Fats. Food Res Int 37:2–10

    Article  CAS  Google Scholar 

  33. Higaki K, Koyano T, Hachiya I, Sato K, Suzuki K (2004) Rheological Properties of β-Fat Gel Made of Binary Mixtures of High-Melting and Low-Melting Fats. Food Res Int 37:799–804

    Article  CAS  Google Scholar 

  34. Cornily G, Meste ML (1985) Flow Behaviour of Lard and of Its Fractions at 15°C. Relationship with Thermal Behaviour and Chemical Composition. J Texture Stud 16:383–402

    Article  Google Scholar 

  35. Davis SS (1973) Rheological Properties of Semi-Solid Foodstuffs—Viscoelasticity and Its Role in Quality Control. J Texture Stud 4:15–40

    Article  Google Scholar 

  36. Pollitt RJM (1974) Oils and Fats Group Symposium: Rheology of Shortenings. J Sci Food Agric 25:885–887

    Article  Google Scholar 

  37. de Man JM, Beers AM (1987) Fat Crystal Networks: Structure and Rheological Properties. J Texture Stud 18:303–318

    Article  Google Scholar 

  38. Nederveen CJ (1963) Dynamic Mechanical Behavior of Suspensions of Fat Particles in Oil. J Colloid Sci 18:276–291

    Article  CAS  Google Scholar 

  39. Heertje I (1993) Microstructural Studies in Fat Research. Food Struct 12:77–94

    CAS  Google Scholar 

  40. Tadros TF (2010) Rheoloy of Dispersions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  41. Mezger TG (2006) The rheology handbook. Vincentz Network, Hannover

  42. Marangoni AG, Acevedo N, Maleky F, Co ED, Peyronel F, Mazzanti G, Quinn B, Pink D (2012) Structure and Functionality of Edible Fats. Soft Matter 8:1275–1300

    Article  CAS  Google Scholar 

  43. Weiss J, Liao W (2000) Addition of Sugars Influences Color and Appearance of Oil-in-Water Emulsions. J Agric Food Chem 48:5053–5058

    Article  CAS  Google Scholar 

  44. Omar Z, Chong CL, Cheow CS, Rashid NA (2005) Crystallisation and Rheological Properties of Hydrogenated Palm Oil and Palm Oil Blends in Relation to Crystal Networking. Eur J Lipid Sci Technol 107:634–640

    Article  CAS  Google Scholar 

  45. Knoester M, de Bruijne P, van Den Tempel M (1972) The Solid-Liquid Equilibrium of Binary Mixtures of Triglycerides with Palmitic and Stearic Chains. Chem Phys Lipids 9:309–319

    Article  CAS  Google Scholar 

  46. McClements DJ, Chantrapornchai W, Clydesdale F (1998) Prediction of Food Emulsion Color Using Light Scattering Theory. J Food Sci 63:935–939

    Article  CAS  Google Scholar 

  47. Chantrapornchai W, Clydesdale F, McClements DJ (1998) Influence of Droplet Size and Concentration on the Color of Oil-in-Water Emulsions. J Agric Food Chem 46:2914–2920

    Article  CAS  Google Scholar 

  48. Graessley WW (1967) Viscosity of Entangling Polydisperse Polymers. J Chem Phys 47:1942–1953

    Article  CAS  Google Scholar 

  49. Lu Y, An L, Wang S-Q, Wang Z-G (2014) Origin of Stress Overshoot During Startup Shear of Entangled Polymer Melts. ACS Macro Lett 3:569–573

    Article  CAS  Google Scholar 

  50. Weiss J, McClements DJ (2000) Influence of Ostwald Ripening on Rheology of Oil-in-Water Emulsions Containing Electrostatically Stabilized Droplets. Langmuir 16:2145–2150

    Article  CAS  Google Scholar 

  51. Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling Behavior of the Elastic Properties of Colloidal Gels. Phys Rev A 42:4772–4779

    Article  CAS  Google Scholar 

  52. Bremer LGB, van Vliet T, Walstra P (1989) Theoretical and Experimental Study of the Fractal Nature of the Structure of Casein Gels. J Chem Soc, Faraday Trans 1(85):3359–3372

    Article  Google Scholar 

  53. Kloek W, Walstra P, Vliet T (2000) Crystallization Kinetics of Fully Hydrogenated Palm Oil in Sunflower Oil Mixtures. J Am Oil Chem Soc 77:389–398

    Article  CAS  Google Scholar 

  54. Metzroth DJ (2005) Shortenings: Science and Technology. In: Shahidi F (ed) Bailey’s Industrial Oil and Fat Products. John Wiley, Hoboken, pp 83–123

    Google Scholar 

  55. Weiss J, Decker EA, McClements J, Kristbergsson K, Helgason T, Awad TS (2008) Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophys 3:146–154

    Article  Google Scholar 

  56. Rogers MA, Tang D, Ahmadi L, Marangoni AG (2007) Fat Crystal Networks. In: Aguilera JM, Lillford PJ (eds) Food Materials Science: Principles and Practice. Springer Science and Business Media, New York, pp 370–414

    Google Scholar 

  57. Marangoni AG (2005) Crystallization Kinetics. In: Marangoni AG (ed) Fat Crystal Networks. Marcel Dekker, NewYork, pp 21–82

    Google Scholar 

  58. Hartel R (2007) The Crystalline State. In: Aguilera JM, Lillford PJ (eds) Food Materials Science: Principles and Practice. Springer Science & Business Media, NewYork, pp 45–66

    Google Scholar 

  59. Marangoni AG, Ollivon M (2007) Fractal Character of Triglyceride Spherulites Is a Consequence of Nucleation Kinetics. Chem Phys Lett 442:360–364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Scheid AG for their financial support of this study and the fruitful discussion of oil-fat mixtures as the basis of marinades. We would also like to thank Cognis for their donation of the palm fat used in this study. Finally, we the appreciate assistance of Thrandur Helgason and Valerie Schuh in conducting the thermal and optical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Weiss.

Additional information

Submitted to the Journal of the American Oil Chemists’ Society in January, 2015

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irmscher, S.B., Gibis, M., Herrmann, K. et al. Oil-Fat Mixtures with Low Solid Fat Concentration: Influence of Fat Concentration and Cooling Conditions. J Am Oil Chem Soc 92, 1277–1291 (2015). https://doi.org/10.1007/s11746-015-2683-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2683-7

Keywords

Navigation