Skip to main content
Log in

Methyl Esters (Biodiesel) from and Fatty Acid Profile of Gliricidia sepium Seed Oil

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related properties were determined. The fatty acid profile was also determined with saturated fatty acids comprising slightly more than 35 %, 16.5 % palmitic, 14.5 % stearic, as well as lesser amounts of even longer-chain fatty acids. Linoleic acid is the most prominent acid at about 49 %. Corresponding to the high content of saturated fatty acid methyl esters, cold flow is the most problematic property as shown by a high cloud point of slightly >20 °C. Otherwise, the properties of G. sepium methyl esters are acceptable for biodiesel use when comparing them to specifications in biodiesel standards but the problematic cold flow properties would need to be observed. The 1H- and 13C-NMR spectra of G. sepium methyl esters are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mittelbach M, Remschmidt C (2004) Biodiesel—the comprehensive handbook. M. Mittelbach, Graz, Austria

  2. Knothe G, Krahl J, Van Gerpen J (eds) (2010) The biodiesel handbook, 2nd edn. AOCS Press, Urbana

    Google Scholar 

  3. Moser BR, Vaughn SF (2010) Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour Tech 101:646–653

    Article  CAS  Google Scholar 

  4. Moser BR, Vaughn SF (2010) Coriander seed oil methyl esters as biodiesel fuel: unique fatty acid composition and excellent oxidative stability. Biomass Bioenergy 34:550–558

    Article  CAS  Google Scholar 

  5. Knothe G, Cermak SC, Evangelista RL (2009) Cuphea oil as source of biodiesel with improved fuel properties caused by high content of methyl decanoate. Energy Fuels 23:1743–1747

    Article  CAS  Google Scholar 

  6. Chapagain BP, Yehoshua Y, Wiesman Z (2009) Desert date (Balanites aegyptiaca) as an arid lands sustainable bioresource for biodiesel. Bioresour Technol 100:1221–1226

    Article  CAS  Google Scholar 

  7. Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:77–82

    Article  CAS  Google Scholar 

  8. Puhan S, Vedaraman N, Ram BVB, Sankaranarayanan G, Jeychandran K (2005) Mahua oil (Madhuca indica seed oil) methyl ester as biodiesel—preparation and emission characteristics. Biomass Bioenergy 28:87–93

    Article  CAS  Google Scholar 

  9. Rashid U, Anwar F, Moser BR, Knothe G (2008) Moringa oleifera oil: a possible source of biodiesel. Bioresour Technol 99:8175–8179

    Article  CAS  Google Scholar 

  10. Jham GN, Moser BR, Shah SN, Holser RA, Dhingra OD, Vaughn SF, Berhow MA, Winkler-Moser JK, Isbell TA, Holloway RK, Walter EL, Natalino R, Anderson JC, Stelly DM (2009) Wild Brazilian mustard (Brassica juncea L.) seed oil methyl esters as biodiesel fuel. J Am Oil Chem Soc 86:917–926

    Article  CAS  Google Scholar 

  11. Moser BR, Knothe G, Vaughn SF, Isbell TA (2009) Production and evaluation of biodiesel from field pennycress (Thlaspi arvense L.) oil. Energy Fuels 23:4149–4155

    Article  CAS  Google Scholar 

  12. Scott PT, Preglj L, Chen N, Hadler JS, Djordjevic MA, Grasshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. BioEnergy Res 1:2–11

    Article  Google Scholar 

  13. Schinas P, Karavalakis G, Davaris C, Anastopoulos G, Karonis D, Zannikos F, Stournas S, Lois E (2009) Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass Bioenergy 33:44–49

    Article  CAS  Google Scholar 

  14. Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84:335–340

    Article  CAS  Google Scholar 

  15. Rashid U, Anwar F, Knothe G (2011) Biodiesel from milo (Thespesia populnea L.) seed oil. Biomass Bioenergy 35:4034–4039

    Article  CAS  Google Scholar 

  16. Nye MJ, Williamson TW, Deshpande S, Schrader JH, Snively WH, Yurkewich TP, French CL (1983) Conversion of used frying oil to diesel fuel by transesterification: preliminary tests. J Am Oil Chem Soc 60:1598–1601

    Article  CAS  Google Scholar 

  17. Mittelbach M, Tritthart P (1988) Diesel fuel derived from vegetable oils, III. emission tests using methyl esters of used frying oil. J Am Oil Chem Soc 65:1185–1187

    Article  CAS  Google Scholar 

  18. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  19. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  20. ASTM (2012) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels D6751-12. American Society for Testing and Materials, West Conshohocken

  21. CEN (2012) Automotive fuels–diesel–fatty acid methyl esters (FAME)—requirements and test methods. EN 14214. European Committee for Standardization, Brussels

  22. Hughes CE (1987) Biological considerations in designing a seed collection strategy for Gliricidia sepium (Jacq.) Walp. (Leguminosae). Commonw For Rev 66:31–48

    Google Scholar 

  23. Simons AJ, Stewart JL (1988) Gliricidia sepium—a multipurpose forage tree legume. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture. Department of Agriculture, The University of Queensland, Queensland 4072, Australia. http://www.fao.org/ag/agp/AGPC/doc/Publicat/Gutt-shel/x5556e07.htm. Accessed 12 Feb 2015

  24. Suttie JM (2015). Gliricidia sepium (Jacq.). http://www.fao.org/ag/agp/AGPC/doc/gbase/data/pf000156.htm. Accessed 12 Feb 2015

  25. Cook, BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge, IJ, Peters M, Schultze-Kraft R (2005) Tropical forages: an interactive selection tool. CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane. http://www.tropicalforages.info/key/Forages/Media/Html/Gliricidia_sepium.htm. Accessed 12 Feb 2015

  26. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestry database: a tree reference and selection guide, version 4.0. http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp; http://www.worldagroforestry.org/treedb/AFTPDFS/Gliricidia_sepium.pdf. Accessed 12 Feb 2015

  27. Ezeagu IE, Petzke KJ, Lange E, Metges CC (1998) Fat content and fatty acid composition of oils extracted from selected wild-gathered tropical plant seeds from Nigeria. J Am Oil Chem Soc 75:1031–1035

    CAS  Google Scholar 

  28. Adewuyi A, Oderinde RA (2013) Lipids classes, fatty acids, fat soluble vitamins, and molecular species of the triacylglycerol of Baphia nitida and Gliricidia sepium seed oils. Int J Food Prop 16:634–642

    Article  CAS  Google Scholar 

  29. Razon LF, Bacani FT, Evangelista RL, Knothe G (2013) Fatty acid profile of Kenaf seed oil. J Am Oil Chem Soc 90:835–840

    Article  CAS  Google Scholar 

  30. Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans SAE 44:1429–1436

    CAS  Google Scholar 

  31. ASTM. Standard Test Method for Determination of Free and Total Glycerin in B100 Biodiesel Methyl Esters by Gas Chromatography D6584. American Society for Testing and Materials, West Conshohocken, PA, USA

  32. Knothe G, Matheaus AC, Ryan TW III (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–975

    Article  CAS  Google Scholar 

  33. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065

    Article  CAS  Google Scholar 

  34. CEN. Fat and oil derivatives—fatty acid methyl ester (FAME)—determination of oxidation stability (accelerated oxidation test) EN 14112. CEN, European Committee for Standardization, Brussels, Belgium

  35. ASTM. standard test method for evaluating lubricity of diesel fuels by the high-frequency reciprocating rig (HFRR) D6079. American Society for Testing and Materials, West Conshohocken, PA, USA

  36. Knothe G, Phoo ZWMM, de Castro MEG, Razon LF (2015) Fatty acid profile of Albizia lebbeck and Albizia saman seed oils. Presence of coronaric acid. Eur J Lipid Sci Technol 117 (in press)

  37. Knothe G, Kenar JA (2004) Determination of the fatty acid profile by 1H-NMR spectroscopy. Eur J Lipid Sci Technol 106:88–96

    Article  CAS  Google Scholar 

  38. Knothe G (2014) A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel 119:6–13

    Article  CAS  Google Scholar 

  39. Knothe G, Steidley KR (2011) Kinematic viscosity of fatty acid methyl esters: prediction, calculated viscosity contribution of esters with unavailable data, and carbon–oxygen equivalents. Fuel 90:3217–3224

    Article  CAS  Google Scholar 

  40. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  41. Frankel EN (2010) Lipid oxidation, 2nd edn. The Oily Press, PJ Barnes & Associates, Bridgewater (England)

    Google Scholar 

  42. Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel-diesel blends. Fuel 87:2069–2075

    Article  CAS  Google Scholar 

  43. Knothe G, Dunn RO (2009) A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc 86:843–856

    Article  CAS  Google Scholar 

  44. Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670

    Article  CAS  Google Scholar 

  45. Foglia TA, Nelson LA, Dunn RO, Marmer WN (1997) Low-temperature properties of alkyl esters of tallow and grease. J Am Oil Chem Soc 74:951–955

    Article  CAS  Google Scholar 

  46. Knothe G, Steidley KR (2014) A comprehensive evaluation of the density of neat fatty acids and esters. J Am Oil Chem Soc 91:1711–1722

    Article  CAS  Google Scholar 

  47. Goodrum JW, Geller DP (2005) Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity. Bioresour Technol 96:851–855

    Article  CAS  Google Scholar 

  48. Knothe G, Steidley KR (2005) Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy Fuels 19:1192–1200

    Article  CAS  Google Scholar 

  49. ASTM. Standard specification for diesel fuel oils D975. American Society for Testing and Materials, West Conshohocken, PA, USA

  50. CEN. Automotive fuels diesel requirements and test methods EN 590. CEN, European Committee for Standardization, Brussels, Belgium

Download references

Acknowledgments

The authors thank Kevin R. Steidley for excellent technical assistance, Kim Ascherl for ICP analysis, and Dr. Karl Vermillion for obtaining the NMR spectra, all of USDA/ARS/NCAUR, and Dr. Michael S. Wibbens (Southwest Research Institute, San Antonio, TX) for cetane number determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Knothe.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knothe, G., de Castro, M.E.G. & Razon, L.F. Methyl Esters (Biodiesel) from and Fatty Acid Profile of Gliricidia sepium Seed Oil. J Am Oil Chem Soc 92, 769–775 (2015). https://doi.org/10.1007/s11746-015-2634-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2634-3

Keywords

Navigation