Skip to main content
Log in

Thermodynamic Modeling of Multi-phase Solid–Liquid Equilibria in Industrial-Grade Oils and Fats

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Compositional thermodynamic phase separation is investigated for industrial-grade vegetable oils with complex compositions. Solid–liquid equilibria have been calculated by utilizing the Margules 2-suffix activity-coefficient model in combination with minimization of the Gibb’s free energy of the system. On the basis of quasi-equilibrium solid-fat content (SFC) measurements, a new approach to the estimation of the interaction parameters, needed for the activity-coefficient model, has been developed. The parameters are fitted by matching the SFC of two oils at various degrees of dilution and isothermal temperatures. Subsequently, the parameters are successfully validated against three oils, rich in asymmetric and symmetric triacylglycerols (TAG), respectively. The new approach developed is shown to be very flexible, allowing incorporation of additional TAG and polymorphic states. It thereby provides a simple way to dealing with multi-component, multi-phase TAG mixtures without having the required binary interaction parameters at hand a priori. This ultimately provides a powerful, predictive tool which may serve as a starting point for laboratory screening and creation of tailor-made products because many different oil mixtures can be evaluated quickly with respect to specific properties, prior to more time-consuming experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α :

Polymorphic form, least stable

β :

Polymorphic form, most stable

β′ :

Polymorphic form, intermediate stability

γ j i :

Activity coefficient of TAG i in the solid phase, j

γ l i :

Activity coefficient of TAG i in the liquid phase, l

μ j i (J/mol):

Chemical potential of component in the solid phase, j

μ l i (J/mol):

Chemical potential of component i in the liquid phase, l

θ :

Interaction parameter matrix

A ik :

Interaction parameter between TAG i and k

G (J/mol):

Gibb’s free energy of the system

g E (J/mol):

Gibb’s excess energy

ΔH sl i (J/mol):

Heat of fusion of TAG i

M i (g/mol):

Molar mass of TAG i

m :

Number of evaluated data points

N :

Number of components in the system

n j i (mol):

Number of moles of TAG i in the solid phase, j

n j (mol):

Number of moles in the solid phase, j

n l (mol):

Number of moles in the liquid phase, l

n l i (mol):

Number of moles of TAG i in the liquid phase, l (mol)

n l,eq i :

Number of moles of TAG i in the liquid phase at equilibrium

n i,tot (mol):

Total amount of component i in the system

P :

Number of phases in the system

R [J/(mol K)]:

Gas constant (8.314)

T (K):

Temperature

\(T_{m, i} (K)\) :

Melting temperature of TAG i

x i :

Mole fraction of TAG i in the liquid phase, l

y i :

Mole fraction of component i in the trial phase

Y i :

Phase stability evaluation parameter

z j i :

Mole fraction of TAG i in the solid phase, j

d :

dth adjustable parameter

i :

ith triacylglycerol

j :

jth solid phase

k :

kth triacylglycerol

l :

Liquid phase

s :

sth data point

y :

Trial phase

References

  1. Formo MW, Jungermann E, Norris FA, Sonntag NOV (1979) Chapter 3. In: Swern D (ed) Bailey’s industrial oil and fat products, 4th edn, vol 1. Wiley, New York

  2. Lonchampt P, Hartel RW (2004) Fat bloom in chocolate and compound coatings. Eur J Lipid Sci Technol 106(4):241–274

    Article  CAS  Google Scholar 

  3. Zhou Y, Hartel R (2006) Phase behavior of model lipid systems: solubility of high-melting fats in low-melting fats. J Am Oil Chem Soc 83(6):505–511

    Article  CAS  Google Scholar 

  4. Lutton E (1955) Phase behavior of triglyceride mixtures involving primarily tristearin, 2-oleyldistearin, and triolein. J Am Oil Chem Soc 32(2):49–53

    Article  CAS  Google Scholar 

  5. Himawan C, Starov VM, Stapley AGF (2006) Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci 122(1–3):3–33

    Article  CAS  Google Scholar 

  6. Wesdorp LH (1990) Liquid–multiple solid phase equilibria in fats, in Ph.D. Thesis1990, Delft University of Technology: Delft (The Netherlands)

  7. Bruin S (1999) Phase equilibria for food product and process design. Fluid Phase Equilib 158–160:657–671

    Article  Google Scholar 

  8. Michelsen ML (1982) The isothermal flash problem. Part I. Stability. Fluid Phase Equilib 9(1):1–19

    Article  CAS  Google Scholar 

  9. Michelsen ML (1982) The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilib 9(1):21–40

    Article  CAS  Google Scholar 

  10. Michelsen ML, Mollerup JM (2007) Thermodynamic models: fundamentals and computational aspects. Tie-Line Publications, Holte

    Google Scholar 

  11. Rousset P, Rappaz M, Minner E (1998) Polymorphism and solidification kinetics of the binary system POS-SOS. J Am Oil Chem Soc 75(7):857–864

    Article  CAS  Google Scholar 

  12. Teles dos Santos M, Le Roux G, Gerbaud V (2011) Phase equilibrium and optimization tools: application for enhanced structured lipids for foods. J Am Oil Chem Soc 88(2):223–233

    Article  Google Scholar 

  13. Los JH, van Enckevort WJP, Vlieg E, Flöter E (2002) Metastable states in multicomponent liquid–solid systems i: a kinetic crystallization model. J Phys Chem B 106(29):7321–7330

    Article  CAS  Google Scholar 

  14. Teles dos Santos M, Le Roux GAC, Gerbaud V (2010) Computer-aided lipid design: phase equilibrium modeling for product design. In: Pierucci S, Ferraris GB (eds) Computer Aided Chemical Engineering. Elsevier, Amsterdam, pp 271–276

    Google Scholar 

  15. Wankat PC (1994) Rate-Controlled separations, 1st edn. Chapman & Hall, London

    Book  Google Scholar 

  16. John Garside RJD (1991) Industrial Crystallization, in Industrial Crystallization1991, Skandinavisk Teknikförmedling International Ab. Kungalv, Sweden

    Google Scholar 

  17. Smith JM, Abbott HCVN (1996) Introduction to Chemical Engineering Thermodynamics, 5th edn. McGraw-Hill, Columbus

    Google Scholar 

  18. Peter Atkins JDP (2006) Physical Chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  19. Conrad Vogel CJ, Maahn Ernst (2001) Metallurgi for ingeniører, 9th edn. Polyteknisk forlag, Kongens Lyngby

    Google Scholar 

  20. Kontogeorgis GM, Folas GK (2010) Thermodynamic Models for Industrial Applications, 1st edn. Wiley, West Sussex

    Book  Google Scholar 

  21. Costa MC, Rolemberg MP, Boros LAD, Krähenbühl MA, de Oliveira MG, Meirelles AJA (2006) Solid–Liquid Equilibrium of Binary Fatty Acid Mixtures. J Chem Eng Data 52(1):30–36

    Article  Google Scholar 

  22. Costa MC, Boros LAD, Souza JA, Rolemberg MP, Krähenbühl MA, Meirelles AJA (2011) Solid-liquid equilibrium of binary mixtures containing fatty acids and triacylglycerols. J Chem Eng Data 56(8):3277–3284

    Article  CAS  Google Scholar 

  23. Vereecken J, Foubert I, Smith KW, Dewettinck K (2009) Effect of SatSatSat and SatOSat on crystallization of model fat blends. Eur J Lipid Sci Technol 111(3):243–258

    Article  CAS  Google Scholar 

  24. Padar S, Jeelani S, Windhab E (2008) Crystallization kinetics of cocoa fat systems: experiments and modeling. J Am Oil Chem Soc 85(12):1115–1126

    Article  CAS  Google Scholar 

  25. Shahidi F (2005) Bailey’s industrial oil and fat products, vol 1–6, 6th edn. Wiley, New Jersey

    Book  Google Scholar 

  26. Gunstone FD, Harwood JL, Padley FB (1994) The lipid handbook, 2nd edn. Chapman and Hall, London

    Google Scholar 

  27. Timms RE (2003) Confectionery fats handbook, 1st edn. The Oily Press, Bridgwater

    Book  Google Scholar 

  28. Yano J, Sato K, Kaneko F, Small DM, Kodali DR (1999) Structural analyses of polymorphic transitions of sn-1,3-distearoyl-2-oleoylglycerol (SOS) and sn-1,3-dioleoyl-2-stearoylglycerol (OSO): assessment on steric hindrance of unsaturated and saturated acyl chain interactions. J Lipid Res 40(1):140–151

    CAS  Google Scholar 

  29. Takeuchi M, Ueno S, Sato K (2003) Synchrotron radiation SAXS/WAXS study of polymorph-dependent phase behavior of binary mixtures of saturated monoacid triacylglycerols. Cryst Growth Des 3(3):369–374

    Article  CAS  Google Scholar 

  30. Zhang L, Ueno S, Miura S, Sato K (2007) Binary Phase Behavior of 1,3-Dipalmitoyl-2-oleoyl-sn-glycerol and 1,2-Dioleoyl-3-palmitoyl-rac-glycerol. J Am Oil Chem Soc 84(3):219–227

    Article  CAS  Google Scholar 

  31. Adhikari P, Shin J-A, Lee J-H, Hu J-N, Zhu X-M, Akoh CC, Lee K-T (2010) Production of trans-free margarine stock by enzymatic interesterification of rice bran oil, palm stearin and coconut oil. J Sci Food Agric 90(4):703–711

    CAS  Google Scholar 

  32. Garti N, Sato K. (eds.) Crystallization and Polymorphism of Fats and Fatty Acids. 1988, Marcel Dekker, New York

  33. Braipson-Danthine S, Gibon V (2007) Comparative analysis of triacylglycerol composition, melting properties and polymorphic behavior of palm oil and fractions. Eur J Lipid Sci Technol 109(4):359–372

    Article  CAS  Google Scholar 

  34. Chong CL, Kamarudin Z, Lesieur P, Marangoni A, Bourgaux C, Ollivon M (2007) Thermal and structural behaviour of crude palm oil: crystallisation at very slow cooling rate. Eur J Lipid Sci Technol 109(4):410–421

    Article  CAS  Google Scholar 

  35. Abd Rashid N, Chiew Let C, Chong Seng C, Omar Z (2012) Crystallisation kinetics of palm stearin, palm kernel olein and their blends. Food Sci Technol Int 46(2):571–573

    CAS  Google Scholar 

  36. van Langevelde A, van Malssen K, Sonneveld E, Peschar R, Schenk H (1999) Crystal packing of a homologous series β′-stable triacylglycerols. J Am Oil Chem Soc 76(5):603–609

    Article  Google Scholar 

  37. Van Langevelde A, Van Malssen K, Driessen R, Goubitz K, Hollander F, Peschar R, Zwart P, Schenk H (2000) Structure of CnCn + 2Cn-type (n = even) β′-triacylglycerols. Acta Crystallogr Sect B: Struct Sci 56(6):1103–1111

    Article  Google Scholar 

  38. Engström L (1992) Triglyceride systems forming molecular compounds. Lipid/Fett 94(5):173–181

    Article  Google Scholar 

  39. Minato A, Ueno S, Smith K, Amemiya Y, Sato K (1997) Thermodynamic and kinetic study on phase behavior of binary mixtures of POP and PPO forming molecular compound systems. J Phys Chem B 101(18):3498–3505

    Article  CAS  Google Scholar 

  40. Takeuchi M, Ueno S, Sato K (2002) Crystallization kinetics of polymorphic forms of a molecular compound constructed by SOS (1,3-distearoyl-2-oleoyl-sn-glycerol) and SSO (1,2-distearoyl-3-oleoyl-rac-glycerol). Food Res Int 35(10):919–926

    Article  CAS  Google Scholar 

  41. Koyano T, Hachiya I, Arishima T, Sagi N, Sato K (1991) Polymorphism of POS. II. kinetics of melt crystallization. J Am Oil Chem Soc 68(10):716–718

    Article  CAS  Google Scholar 

  42. Rousset P, Rappaz M (1996) Crystallization kinetics of the pure triacylglycerols glycerol-1,3-dipalmitate-2-oleate, glycerol-1-palmitate-2-oleate-3-stearate, and glycerol-1,3-distearate-2-oleate. J Am Oil Chem Soc 73(8):1051–1057

    Article  Google Scholar 

  43. Smyth GK (2006) Nonlinear Regression. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of Environmetrics. Wiley, New York

  44. Maximo GJ, Costa MC, Meirelles AJA (2013) Solid-liquid equilibrium of triolein with fatty alcohols. Braz J Chem Eng 30(1):33–43

    Article  CAS  Google Scholar 

  45. Andrade Santacoloma, P.d.G. (2012) Multi-enzyme Process Modeling. In: Woodley J, Gernaey K, Sin G (eds) DTU Chemical Engineering

  46. Prado Rubio OA (2010) Integration of Bioreactor and Membrane Separation Processes: a model based approach. reverse electro-enhanced dialysis process for lactic acid fermentation. In: Jonsson GE, Jørgensen SB (eds), Technical University of Denmark (DTU)

  47. Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154

    Article  CAS  Google Scholar 

  48. Mohos FÁ (2010) Crystallization. Confectionery and Chocolate Engineering. Wiley, New York, pp 309–393

    Chapter  Google Scholar 

  49. Takeuchi M, Ueno S, Flöter E, Sato K (2002) Binary phase behavior of 1,3-distearoyl-2-oleoyl-sn-glycerol (SOS) and 1,3-distearoyl-2-linoleoyl-sn-glycerol (SLS). J Am Oil Chem Soc 79(7):627–632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from The Danish Agency for Science, Technology and Innovation (Forsknings-og Innovationsstyrelsen) and InSPIRe (Project no. III-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe L. Hjorth.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjorth, J.L., Miller, R.L., Woodley, J.M. et al. Thermodynamic Modeling of Multi-phase Solid–Liquid Equilibria in Industrial-Grade Oils and Fats. J Am Oil Chem Soc 92, 17–28 (2015). https://doi.org/10.1007/s11746-014-2577-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2577-0

Keywords

Navigation