Skip to main content
Log in

Effects of Particle Size of Sucrose Suspensions and Pre-incubation of Enzymes on Lipase-Catalyzed Synthesis of Sucrose Oleic Acid Esters

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The effects of high-speed homogenization, high-intensity ultrasound, and their combination were evaluated for the reduction of the particle size of sucrose crystals to enhance solvent-free lipase-catalyzed synthesis of sucrose oleate at 65 °C. The combination of homogenization and ultrasound greatly decreased the particle size of suspended sucrose crystals in mixtures of oleic acid/sucrose oleate (86 wt% monoester and 14 wt% diester at a ratio of 90/10 w/w) from 88 to 18 μm. The suspension-based medium was charged to a stirred tank bioreactor that also contained immobilized lipase from Rhizomucor miehei or Candida antarctica (Lipozyme®IM and Novozym® 435, respectively; Novozymes, Franklinton, NC, USA), that was pre-incubated in oleic acid for several different temperatures (23–60 °C), durations (4–24 h), and stir rates (50–400 rpm, radius of 3 cm), prior to use. The optimal performance was achieved using C. antarctica lipase (83.3 wt% ester, consisting of 46 wt% monoester) in the presence of molecular sieves (18 wt%). The low water concentration (~0.12 wt%) did not affect the activity of C. antarctica lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 101:25–33

    Article  CAS  Google Scholar 

  2. Hayes DG (2004) Enzyme-catalyzed modification of oilseed materials to produce eco-friendly products. J Am Oil Chem Soc 81:1077–1103

    Article  CAS  Google Scholar 

  3. Neta NDS, dos Santos JCS, Sancho SD, Rodrigues S, Goncalves LR, Rodrigues LR, Teixeira JA (2012) Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocoll 27:324–331

    Article  Google Scholar 

  4. Bidjou-Haiour C, Klai N (2013) Lipase catalyzed synthesis of fatty acid xylose esters and their surfactant properties. Asian J Chem 25:4347–4350

    CAS  Google Scholar 

  5. Zhao H, Liu J, Lv F, Ye R, Bie X, Zhang C, Lu Z (2014) Enzymatic synthesis of lard-based ascorbyl esters in a packed-bed reactor: optimization by response surface methodology and evaluation of antioxidant properties. LWT-Food Sci Technol 57:393–399

    Article  CAS  Google Scholar 

  6. Xiao D, Ye R, Davidson PM, Hayes DG, Golden DA, Zhong QX (2011) Sucrose monolaurate improves the efficacy of sodium hypochlorite against Escherichia coli O157:H7 on spinach. Int J Food Microbiol 145:64–68

    Article  CAS  Google Scholar 

  7. Ferrer M, Perez G, Plou FJ, Castell JV, Ballesteros A (2005) Antitumour activity of fatty acid maltotriose esters obtained by enzymatic synthesis. Biotechnol Appl Biochem 42:35–39

    Article  CAS  Google Scholar 

  8. Bachan S, Fantini J, Joshi A, Garg H, Mootoo DR (2011) Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides. Bioorgan Med Chem 19:4803–4811

    Article  CAS  Google Scholar 

  9. Szuts A, Szabo-Revesz P (2012) Sucrose esters as natural surfactants in drug delivery systems—a mini-review. Int J Pharm 433:1–9

    Article  CAS  Google Scholar 

  10. Abdel-Mageed HM, El-Laithy HM, Mahran LG, Fahmy AS, Mader K, Mohamed SA (2012) Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process Biochem 47:1155–1162

    Article  CAS  Google Scholar 

  11. Pyo SH, Hayes DG (2009) Designs of bioreactor systems for solvent-free lipase-catalyzed synthesis of fructose-oleic acid esters. J Am Oil Chem Soc 86:521–529

    Article  CAS  Google Scholar 

  12. Hayes DG, Mannam VK, Ye R, Zhao H, Ortega S, Montiel MC (2012) Modification of oligo-ricinoleic acid and its derivatives with 10-undecenoic acid via lipase-catalyzed esterification. Polymers 4:1037–1055

    Article  CAS  Google Scholar 

  13. Sabeder S, Habulin M, Knez Z (2006) Lipase-catalyzed synthesis of fatty acid fructose esters. J Food Eng 77:880–886

    Article  CAS  Google Scholar 

  14. Gumel AM, Annuar MSM, Heidelberg T, Chisti Y (2011) Lipase mediated synthesis of sugar fatty acid esters. Process Biochem 46:2079–2090

    Article  CAS  Google Scholar 

  15. Sun P, Chen YY, Wang H, Li J, Gao J, Wang HB, Zheng XY, Zhang SK (2011) Lipase-catalyzed synthesis and characterization of myristoyl maltose ester. Eur Food Res Technol 233:253–258

    Article  CAS  Google Scholar 

  16. Yang Z, Huang ZL (2012) Enzymatic synthesis of sugar fatty acid esters in ionic liquids. Catal Sci Technol 2:1767–1775

    Article  CAS  Google Scholar 

  17. Fischer F, Happe M, Emery J, Fornage A, Schutz R (2013) Enzymatic synthesis of 6-and 6′-O-linoleyl-alpha-d-maltose: from solvent-free to binary ionic liquid reaction media. J Mol Catal B Enzym 90:98–106

    Article  CAS  Google Scholar 

  18. Shi YG, Cai Y, Li JR, Chu YH (2011) Enzyme-catalyzed regioselective synthesis of carbohydrate fatty acid esters in ionic liquids. Progress Chem 23:2247–2257

    CAS  Google Scholar 

  19. Rahman MBA, Arumugam M, Khairuddin NSK, Abdulmalek E, Basri M, Salleh A (2012) Microwave assisted enzymatic synthesis of fatty acid sugar ester in ionic liquid-tert-butanol biphasic solvent system. Asian J Chem 24:5058–5062

    Google Scholar 

  20. Lu YY, Yan R, Ma X, Wang Y (2013) Synthesis and characterization of raffinose fatty acid monoesters under ultrasonic irradiation. Eur Food Res Technol 237:237–244

    Article  CAS  Google Scholar 

  21. Habulin M, Sabeder S, Knez Z (2008) Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity. J Supercrit Fluids 45:338–345

    Article  CAS  Google Scholar 

  22. Hayes DG, Kitamoto D, Solaiman D, Ashby R (2009) Biobased surfactants and detergents: synthesis, properties, and applications. AOCS, Urbana

    Google Scholar 

  23. Ye R, Hayes DG (2014) Recent progress for lipase-catalysed synthesis of sugar fatty acid esters. J Oil Palm Res

  24. Ye R, Hayes DG (2012) Lipase-catalyzed synthesis of saccharide-fatty acid esters utilizing solvent-free suspensions: effect of acyl donors and acceptors, and enzyme activity retention. J Am Oil Chem Soc 89:455–463

    Article  CAS  Google Scholar 

  25. Ye R, Hayes DG (2011) Optimization of the solvent-free lipase-catalyzed synthesis of fructose-oleic acid ester through programming of water removal. J Am Oil Chem Soc 88:1351–1359

    Article  CAS  Google Scholar 

  26. Ye R, Hayes DG (2012) Solvent-free lipase-catalysed synthesis of saccharide-fatty acid esters: closed-loop bioreactor system with in situ formation of metastable suspensions. Biocatal Biotransform 30:209–216

    Article  CAS  Google Scholar 

  27. Ye R, Pyo SH, Hayes DG (2010) Lipase-catalyzed synthesis of saccharide-fatty acid esters using suspensions of saccharide crystals in solvent-free media. J Am Oil Chem Soc 87:281–293

    Article  CAS  Google Scholar 

  28. McClements DJ (1999) Food emulsions: principles, practices and techniques. CRC, USA

    Google Scholar 

  29. Camino NA, Pilosof AM (2011) Hydroxypropyl methylcellulose at the oil–water interface. Part II. Submicron-emulsions as affected pH. Food Hydrocoll 25:1051–1062

    Article  CAS  Google Scholar 

  30. Guo X, Zhao W, Pang X, Liao X, Hu X, Wu J (2013) Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: a comparative study. Food Hydrocoll 35:217–225

    Article  Google Scholar 

  31. Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov Food Sci Emerg Technol 9:147–154

    Article  CAS  Google Scholar 

  32. Dang HT, Obiri O, Hayes DG (2005) Feed batch addition of saccharide during saccharide-fatty acid esterification catalyzed by immobilized lipase: time course, water activity, and kinetic model. J Am Oil Chem Soc 82:487–493

    Article  CAS  Google Scholar 

  33. Zhang X, Hayes DG (1999) Increased rate of lipase-catalyzed saccharide-fatty acid esterification by control of reaction medium. J Am Oil Chem Soc 76:1495–1500

    Article  CAS  Google Scholar 

  34. Chen Y, Ye R, Liu J (2013) Understanding of dispersion and aggregation of suspensions of zein nanoparticles in aqueous alcohol solutions after thermal treatment. Ind Crops Prod 50:764–770

    Article  CAS  Google Scholar 

  35. Ye R, Harte F (2013) Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. J Dairy Sci 96:799–805

    Article  CAS  Google Scholar 

  36. Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8:853–860

    Article  CAS  Google Scholar 

  37. Fuentes G, Ballesteros A, Verma CS (2004) Specificity in lipases: a computational study of transesterification of sucrose. Protein Sci 13:3092–3103

    Article  CAS  Google Scholar 

  38. Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80

    Article  CAS  Google Scholar 

  39. Anderson EM, Karin M, Kirk O (1998) One biocatalyst—Many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransform 16:181–204

    Article  CAS  Google Scholar 

  40. Hayes DG, Kleiman R (1993) 1, 3-specific lipolysis of Lesquerella fendleri oil by immobilized and reverse-micellar encapsulated enzymes. J Am Oil Chem Soc 70:1121–1127

    Article  CAS  Google Scholar 

  41. Arcos JA, Hill CG, Otero C (2001) Kinetics of the lipase-catalyzed synthesis of glucose esters in acetone. Biotechnol Bioeng 73:104–110

    Article  CAS  Google Scholar 

  42. Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293–308

    Article  CAS  Google Scholar 

  43. Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal 66:15–32

    Article  CAS  Google Scholar 

  44. Reis P, Holmberg K, Watzke H, Leser M, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interface Sci 147:237–250

    Article  Google Scholar 

  45. Reyes-Duarte D, Lopez-Cortes N, Ferrer M, Plou Gasca, F, Ballesteros A (2004) Parameters affecting productivity in the lipase-catalysed synthesis of sucrose palmitate. Biocatal Biotransform 23:19–27

  46. Lee YK, Choo CL (1989) The kinetics and mechanism of shear inactivation of lipase from candida-cylindracea. Biotechnol Bioeng 33:183–190

    Article  CAS  Google Scholar 

  47. Li C, Tan TW, Zhang HY, Feng W (2010) Analysis of the conformational stability and activity of candida antarctica lipase b in organic solvents insight from molecular dynamics and quantum mechanics/simulations. J Biol Chem 285:28434–28441

    Article  CAS  Google Scholar 

  48. Janseen AE, Van der Padt A, Van Sonsbeek HM, Van’t Riet K (1993) The effect of organic solvents on the equilibrium position of enzymatic acylglycerol synthesis. Biotechnol Bioeng 41:95–103

    Article  CAS  Google Scholar 

  49. Kennedy JF, Kumar H, Panesar PS, Marwaha SS, Goyal R, Parmar A, Kaur S (2006) Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds. J Chem Technol Biotechnol 81:866–876

    Article  CAS  Google Scholar 

  50. Woudenberg-van Oosterom M, van Rantwijk F, Sheldon RA (1996) Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol Bioeng 49:328–333

    Article  CAS  Google Scholar 

  51. Kim JE, Han JJ, Yoon JH, Rhee JS (1998) Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose. Biotechnol Bioeng 57:121–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was kindly supplied by the US Department of Agriculture, SBIR Grant (2012-33610-19502). We also thank Dr. Svetlana Zivanovic for her assistance in the use of high speed homogenizator and ultrasound instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Hayes.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, R., Hayes, D.G. & Burton, R. Effects of Particle Size of Sucrose Suspensions and Pre-incubation of Enzymes on Lipase-Catalyzed Synthesis of Sucrose Oleic Acid Esters. J Am Oil Chem Soc 91, 1891–1901 (2014). https://doi.org/10.1007/s11746-014-2537-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2537-8

Keywords

Navigation