Skip to main content
Log in

The Formation of a 12-Hydroxystearic Acid/Vegetable Oil Organogel Under Shear and Thermal Fields

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

External laminar oscillatory shear applied during crystallization in combination with different temperature fields was used to modify the microstructure and physical properties of edible oil organogels. Crystallization at a high cooling rate (30 °C/min) resulted in a spherulitic microstructure with a higher oil-binding capacity, lower storage modulus and lower yield stress compared with a material (with a fibrillar microstructure) crystallized at a slow cooling rate (1 °C/min). The application of an oscillatory shear resulted in the formation of novel microstructures depending on the cooling regime used. The application of an oscillatory shear (strain > 500 % and frequency = 1 Hz) resulted in the thickening of fibers observed in the slow-cooled material and an increased incidence of spherulite nucleation in the rapidly cooled material. Increasing the frequency of the oscillatory shear applied did not change the microstructure for the slow-cooled gel but further increased the incidence of nucleation for the rapidly cooled gel. The application of controlled-strain oscillatory shear to the crystallizing gel at either cooling rates resulted in an oily and very soft, paste-like material. This material had a lower storage modulus and poorer oil-binding capacity compared with the same gel crystallized statically. Reduction of the oscillatory strain from a maximum of 1500 to 500 % moderately mitigated the loss of mechanical properties and oil-binding capacity although these properties were in no way comparable to those obtained from static crystallization. The study shows that the application of oscillatory shear and different cooling regimes can be used to tailor a crystalline organogel. However, the application of continuous shear must be done with care as application of excessive shear can result in a complete breakdown in gel structure and large amounts of oil loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brandt M, Moss J, Ferguson M (2009) The 2006–2007 food label and package survey (FLAPS): nutrition labelling, trans fat labelling. J Food Compos Anal 225:S74–S77

    Article  Google Scholar 

  2. LeGault L, Brandt MB, McCabe N, Adler C, Brown AM, Brecher S (2004) 2000–2001 food label and package survey: an update on prevalence of nutrition labeling and claims on processed, packaged foods. J Am Diet Assoc 104:952–958

    Article  Google Scholar 

  3. Mensink RP, Zock PL, Kester ADM, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77:1146–1155

    CAS  Google Scholar 

  4. Keys A (1957) Diet and the epidemiology of coronary heart disease. J Am Med Assoc 164:1912–1919

    Article  CAS  Google Scholar 

  5. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613

    Article  CAS  Google Scholar 

  6. Ascherio A, Katan MB, Zock PL, Stampfer MJ, Willett WC (1999) Trans fatty acids and coronary heart disease. N Engl J Med 340:1994–1998

    Article  CAS  Google Scholar 

  7. Bot A, Veldhuizen YSJ, den Adel R, Roijers EC (2009) Non-TAG structuring of edible oils and emulsions. Food Hydrocolloids 23:1184–1189

    Article  CAS  Google Scholar 

  8. Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci 12:221–231

    Article  CAS  Google Scholar 

  9. Rogers MA (2009) Novel structuring strategies for unsaturated fats—Meeting the zero-trans, zero-saturated fat challenge: a review. Food Res Int 42:747–753

    Article  CAS  Google Scholar 

  10. Térech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97:3133–3159

    Article  Google Scholar 

  11. Abdallah DJ, Weiss RG (2000) Organogels and low molecular mass organic gelators. Adv Mater 2000:1237–1247

    Article  Google Scholar 

  12. Weiss RG, Térech P (2006) Introduction. In: Weiss RG, Térech P (eds) Molecular gels: materials with self-assembled fibrillar networks. Springer, Dordrecht, pp 1–16

    Google Scholar 

  13. Co ED, Marangoni AG (2012) Organogels: an alternative edible oil-structuring method. J Am Oil Chem Soc 89:749–780

    Article  Google Scholar 

  14. Binder RG, Applewhite TH, Kohler GO, Goldblatt LA (1962) Chromatographic analysis of seed oils. Fatty acid composition of castor oil. J Am Oil Chem Soc 39:513–517

    Article  CAS  Google Scholar 

  15. Babu S, Sudershan RV, Sharma RK, Ramesh VB (1996) A simple and rapid polarimetric method for quantitative determination of castor oil. J American Oil Chem Soc 73:397–398

    Article  CAS  Google Scholar 

  16. Masri MD, Goldblatt LA, DeEDS F, Kohler GO (1962) Relation of cathartic activity to structural modifications of ricinoleic acid of castor oil. J Pharm Sci 510:999–1002

    Article  Google Scholar 

  17. Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE (2009) Potential food applications of edible oil organogels. Trends Food Sci Technol 20:470–480

    Article  CAS  Google Scholar 

  18. Tamura T, Ichikawa M (1997) Effect of lecithin on organogel formation of 12-hydroxystearic acid. J Am Oil Chem Soc 74:491–495

    Article  CAS  Google Scholar 

  19. Lescanne M, Colin A, Mondain-Monval O, Heuz K, Fages F, Pozzo JL (2002) Flow-induced alignment of fiberlike supramolecular self-assemblies during organogel formation with various low molecular mass organogelator-solvent systems. Langmuir 18:7151–7153

    Article  CAS  Google Scholar 

  20. Xiong Y, Liu Q, Wang H, Yang Y (2008) Self-assembly of a dialkylurea gelator in organic solvents in the presence of centrifugal and shearing forces. J Colloid Interface Sci 318:496–500

    Article  CAS  Google Scholar 

  21. Bot A, Agterof WGM (2006) Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. J Am Oil Chem Soc 83:513–521

    Article  CAS  Google Scholar 

  22. Térech P, Pasquier D, Bordas V, Rossat C (2000) Rheological properties and structural correlations in molecular organogels. Langmuir 16:4485–4494

    Article  Google Scholar 

  23. Burkhardt M, Kinzel S, Gradzielski M (2009) Macroscopic properties and microstructure of HSA based organogels: sensitivity to polar additives. J Colloid Interface Sci 331:514–521

    Article  CAS  Google Scholar 

  24. Jahaniaval F, Kakuda Y, Abraham V (2002) Oil-binding capacity of plastic fats: effects of intermediate melting point TAG. J Am Oil Chem Soc 79:389–394

    Article  CAS  Google Scholar 

  25. Liu XY (2005) Gelation with small molecules: from formation mechanism to network architecture. In: Fages F (ed) Topics in Current Chemistry 256: Low Molecular Mass Organogelators. Springer-Verlag, Berlin, pp 1–37

    Chapter  Google Scholar 

  26. Li JL, Liu XY, Wang RY, Xiong JY (2005) Architecture of a biocompatible supramolecular material by supersaturation-driven fabrication of its fiber network. J Phys Chem B 109:24231–24235

    Article  CAS  Google Scholar 

  27. Da Pieve S, Calligaris S, Co E, Nicoli MC, Marangoni AG (2010) Shear nanostructuring of monoglyceride organogels. Food Biophys 5:211–217

    Article  Google Scholar 

  28. Wang RY, Liu XY, Xiong JY, Li JL (2006) Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property. J Phys Chem B 110:7275–7280

    Article  CAS  Google Scholar 

  29. Wang RY, Liu XY, Narayanan J, Xiong JY, Li JL (2006) Architecture of fiber network: from understanding to engineering of molecular gels. J Phys Chem B 110:25797–25802

    Article  CAS  Google Scholar 

  30. Lam R, Quaroni L, Pedersen T, Rogers MA (2010) A molecular insight into the nature of crystallographic mismatches in self-assembled fibrillar networks under non-isothermal crystallization conditions. Soft Matter 6:404–408

    Article  CAS  Google Scholar 

  31. Rogers MA, Marangoni AG (2008) Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils. Cryst Growth Des 8:4596–4601

    Article  CAS  Google Scholar 

  32. Keith HD, Padden FJ (1963) A phenomenological theory of spherulitic crystallization. J Appl Phys 34:2409–2421

    Article  CAS  Google Scholar 

  33. Ziegleder G (1993) Vorkristallisation von Schokoladen: Einflüsse durch Produkt und Maschine. Süßwaren 37:54–58

    Google Scholar 

  34. Campos JR (2006) Effects of Processing Conditions on the Crystallization of Cocoa Butter. Ph.D. Thesis, University of Guelph, Guelph, Canada

  35. Liu XY, Sawant PD (2002) Mechanism of the formation of self-organized microstructures in soft functional materials. Adv Mater 14:412–426

    Google Scholar 

  36. Li JL, Yuan B, Liu XY, Xu HY (2010) Microengineering of supramolecular soft materials by design of the crystalline fiber networks. Cryst Growth Des 10:2699–2706

    Article  CAS  Google Scholar 

  37. Rogers MA, Wright AJ, Marangoni AG (2009) Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr Opin Colloid Interface Sci 14:33–42

    Article  CAS  Google Scholar 

  38. Shi JH, Liu XY, Li JL, Strom CS, Xu HY (2009) Spherulitic networks: from structure to rheological property. J Phys Chem B 113:4549–4554

    Article  CAS  Google Scholar 

  39. Rogers MA, Wright AJ, Marangoni AG (2008) Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter 4:1483–1490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro G. Marangoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12-HSA crystallized statically in canola oil at 1 K/min (WMV 5.14 mb)

12-HSA crystallized under oscillatory shear in canola oil at a cooling rate of 1 K/min (WMV 7.07 mb)

About this article

Cite this article

Co, E., Marangoni, A.G. The Formation of a 12-Hydroxystearic Acid/Vegetable Oil Organogel Under Shear and Thermal Fields. J Am Oil Chem Soc 90, 529–544 (2013). https://doi.org/10.1007/s11746-012-2196-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2196-6

Keywords

Navigation