Skip to main content
Log in

Glucose Uptake and Triacylglycerol Synthesis Are Increased in Barth Syndrome Lymphoblasts

  • Rapid Communication
  • Published:
Lipids

Abstract

Barth syndrome (BTHS) is an X-linked genetic disease resulting in loss of cardiolipin (Ptd2Gro). Patients may be predisposed to hypoglycemia and exhibit increases in whole-body glucose disposal rates and a higher fat mass percentage. We examined the reasons for this in BTHS lymphoblasts. BTHS lymphoblasts exhibited a 60% increase (p < 0.004) in 2-[1,2-3H(N)]deoxy-d-glucose uptake, a 40% increase (p < 0.01) in glucose transporter-3 protein expression, an increase in phosphorylated-adenosine monophosphate kinase (AMPK) and a 58% increase (p < 0.001) in the phosphorylated-AMPK/AMPK ratio compared to controls. In addition, BTHS lymphoblasts exhibited a 90% (p < 0.001) increase in d-[U-14C]glucose incorporated into 1,2,3-triacyl-sn-glycerol (TAG) and a 29% increase (p < 0.025) in 1,2-diacyl-sn-glycerol acyltransferase-2 activity compared to controls. Thus, BTHS lymphoblasts exhibit increased glucose transport and increased glucose utilization for TAG synthesis. These results may, in part, explain why BTHS patients exhibit an increase in whole-body glucose disposal rates, may be predisposed to hypoglycemia and exhibit a higher fat mass percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BTHS:

Barth syndrome

TAZ :

Tafazzin

Ptd2Gro:

Cardiolipin

2-[3H]DG:

2-[1,2-3H(N)]deoxy-d-glucose

GLUT1:

Glucose transporter-1

GLUT3:

Glucose transporter-3

DAG:

1,2-Diacyl-sn-glycerol

DGAT-2:

1,2-Diacyl-sn-glycerol acyltransferase-2

TAG:

1,2,3-Triacyl-sn-glycerol

PtdGro:

Phosphatidylglycerol

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdSer/PtdIns:

Phosphatidylserine/phosphatidylinositol

References

  1. Mejia EA, Hatch GM (2016) Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 48(2):99–112

    Article  CAS  PubMed  Google Scholar 

  2. Schlame M, Greenberg ML (2017) Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta 1862(1):3–7

    Article  CAS  PubMed  Google Scholar 

  3. Clarke SL et al (2013) Barth syndrome. Orphanet J Rare Dis 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schlame M (2013) Cardiolipin remodeling and the function of tafazzin. Biochim Biophys Acta 1831(3):582–588

    Article  CAS  PubMed  Google Scholar 

  5. Cade WT et al (2013) Substrate metabolism during basal and hyperinsulinemic conditions in adolescents and young-adults with Barth syndrome. J Inherit Metab Dis 36(1):91–101

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto N et al (2011) Measurement of glucose uptake in cultured cells. Curr Protoc Pharmacol 12(14):1–22

    Google Scholar 

  7. Hatch GM, McClarty G (1996) Regulation of cardiolipin biosynthesis in H9c2 cardiac myoblasts by cytidine 5′-triphosphate. J Biol Chem 271(42):25810–25816

    Article  CAS  PubMed  Google Scholar 

  8. Chang W, Chen L, Hatch GM (2016) Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes. Biochim Biophys Acta 1861(4):352–362

    Article  CAS  PubMed  Google Scholar 

  9. Ravandi A et al (2014) Release of bioactive lipids during percutaneous coronary, and peripheral arterial interventions in humans: lipidomic analysis of distal embolic protection devices. J Amer Col Cardiol 63(19):1961–1971

    Article  CAS  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Mantych GJ et al (1992) Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain. Endocrinology 131(3):1270–1278

    CAS  PubMed  Google Scholar 

  12. Carruthers A et al (2009) Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab 297(4):E836–E848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phillips T et al (2005) Differential regulation of the GLUT1 and GLUT3 glucose transporters by growth factors and pro-inflammatory cytokines in equine articular chondrocytes. Vet J 169(2):216–222

    Article  CAS  PubMed  Google Scholar 

  14. He Q et al (2005) Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts. Am J Physiol Heart Circ Physiol 305(9):H1332–H1343

    Article  Google Scholar 

  15. Cidad P, Almeida A, Bolaños JP (2004) Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochem J 384(Pt3):629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferreira C, Thompson R, Vernon H (2014) Barth syndrome, in GeneReviews®, Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K (eds), University of Washington, Seattle; pp 1993–2016

  17. Kiebish MA et al (2013) Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res 54(5):1312–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vreken P et al (2000) Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 279(2):378–382

    Article  CAS  PubMed  Google Scholar 

  19. Vernon HJ et al (2014) Clinical laboratory studies in Barth syndrome. Mol Genet Metab 112(2):143–147

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen H et al (2016) Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells. J Neurochem 139(1):68–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Barth Syndrome Foundation of Canada/USA and the National Sciences and Engineering Research Council [RGPIN/03640-2014] (to GMH), a Research Manitoba/CHRIM Studentship (to EMM), and a CHRIM summer studentship (to JCZ). GMH is the Canada Research Chair in Molecular Cardiolipin Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant M. Hatch.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejia, E.M., Zinko, J.C., Hauff, K.D. et al. Glucose Uptake and Triacylglycerol Synthesis Are Increased in Barth Syndrome Lymphoblasts. Lipids 52, 161–165 (2017). https://doi.org/10.1007/s11745-017-4232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4232-7

Keywords

Navigation