Skip to main content
Log in

Effects of Lipid Structure Changed by Interesterification on Melting Property and Lipemia

  • Review
  • Published:
Lipids

Abstract

Interesterification or the randomization reaction changes fatty acid positional distribution and solid fat content of fats, which may consequently affect fat absorption and metabolism. It is well established that saturated fatty acids in the sn-2 position of triacylglycerols (TAG) have better digestibility and lower postprandial chylomicron clearance compared to those in the sn-1,3 positions in animal experiments. TAG structure is also shown to affect fasting lipid level and atherosclerosis in animals, but fat interesterification it has been shown to not affect fasting lipid level in human adults. However, its effect on postprandial responses is controversial. In this review, the complex results of studies of interesterification and lipemia were briefly discussed. More importantly, the confounding of two factors that are both changed by interesterification, TAG structure and solid fat content as the main limitation on understanding how interesterification affects lipemia is emphasized. Separation of the two factors is possible using paired fats as demonstrated. This paper also discusses some intriguing effects of fats having saturated fatty acids in the sn-2 position and the need for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CE:

Cholesteryl ester

CIE:

Chemically interesterified fat

EIE:

Enzymatically interesterified fat

FVIIa:

The activated form of FVIIc

FVIIc:

Factor VII coagulant

HDL:

High density lipoprotein

IE:

Interesterified fat

LPL:

Lipoprotein lipase

MAG:

Monoacylglycerols

mM:

Milli-molar concentration

MP:

Melting point

NA:

Not available

NIE:

Non-interesterified fat

P:

Probability

POS:

P (palmitic acid), O (oleic acid), an S (stearic acid) esterified on the sn-1, 2 and 3 position of the glycerol. Other expressions use the same notation

SMP:

Slip melting point

sn:

Stereospecific numbering

TAG:

Triacylglycerols

VLDL:

Very low density lipoprotein

References

  1. Fernandez ML, McNamara DJ (1991) Regulation of cholesterol and lipoprotein metabolism in guinea pigs mediated by dietary fat quality and quantity. J Nutr 121:934–943

    CAS  PubMed  Google Scholar 

  2. Lichtenstein AH (2003) Dietary fat and cardiovascular disease risk: quantity or quality? J Women’s Health 12:109–114

    Article  Google Scholar 

  3. George J, Mulkins M, Casey S, Schatzman R, Sigal E, Harats D (2000) The effects of N-6 polyunsaturated fatty acid supplementation on the lipid composition and atherogenesis in mouse models of atherosclerosis. Atherosclerosis 150:285–293

    Article  CAS  PubMed  Google Scholar 

  4. Nestel PJ, Pomeroy S, Kay S, Sasahara T, Yamashita T (1998) Effect of a stearic acid-rich, structured triacylglycerol on plasma lipid concentrations. Am J Clin Nutr 68:1196–1201

    CAS  PubMed  Google Scholar 

  5. Roche HM, Zampelas A, Knapper J, Webb D, Brooks C, Jackson KG, Wright JW, Gould BJ, Kafatos A, Gibney MJ (1998) Effect of long-term olive oil dietary intervention on postprandial triacylglycerol and factor VII metabolism. Am J Clin Nutr 68:552–560

    CAS  PubMed  Google Scholar 

  6. Hayes K, Pronczuk A, Lindsey S, Diersen-Schade D (1991) Dietary saturated fatty acids (12: 0, 14: 0, 16: 0) differ in their impact on plasma cholesterol and lipoproteins in nonhuman primates. Am J Clin Nutr 53:491–498

    CAS  PubMed  Google Scholar 

  7. Tholstrup T, Sandström B, Bysted A, Hølmer G (2001) Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. Am J Clin Nutr 73:198–208

    CAS  PubMed  Google Scholar 

  8. Judd JT, Clevidence BA, Muesing RA, Wittes J, Sunkin ME, Podczasy JJ (1994) Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr 59:861–868

    CAS  PubMed  Google Scholar 

  9. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613

    Article  CAS  PubMed  Google Scholar 

  10. Sanders TAB (2009) Fat and fatty acid intake and metabolic effects in the human body. Ann Nutr Metab 55:162–172

    Article  CAS  PubMed  Google Scholar 

  11. Berry SEE (2009) Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr Res Rev 22:3–17

    Article  CAS  PubMed  Google Scholar 

  12. Kayden HJ, Senior JR, Mattson FH (1967) The monoglyceride pathway of fat absorption in man. J Clin Investig 46:1695–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mu H, Høy CE (2004) The digestion of dietary triacylglycerols. Prog Lipid Res 43:105–133

    Article  CAS  PubMed  Google Scholar 

  14. Small DM (1991) The effects of glyceride structure on absorption and metabolism. Annu Rev Nutr 11:413–434

    Article  CAS  PubMed  Google Scholar 

  15. Mattson FH, Nolen GA, Webb MR (1979) The absorbability by rats of various triglycerides of stearic and oleic acid and the effect of dietary calcium and magnesium. J Nutr 109:1682–1687

    CAS  PubMed  Google Scholar 

  16. Jiménez MJ, Esteban L, Robles A, Hita E, González PA, Muñío MM, Molina E (2010) Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochem 45:407–414

    Article  Google Scholar 

  17. Christensen MS, Mortimer BC, Høy CE (1995) Clearance of chylomicrons following fish oil and seal oil feeding. Nutr Res 15:359–368

    Article  Google Scholar 

  18. Mortimer BC, Holthouse D, Martins I, Stick R, Redgrave T (1994) Effects of triacylglycerol-saturated acyl chains on the clearance of chylomicron-like emulsions from the plasma of the rat. Biochim Biophys Acta 1211:171–180

    Article  CAS  PubMed  Google Scholar 

  19. Mortimer BC, Kenrick M, Holthouse D, Stick R, Redgrave T (1992) Plasma clearance of model lipoproteins containing saturated and polyunsaturated monoacylglycerols injected intravenously in the rat. Biochim Biophys Acta 1127:67–73

    Article  CAS  PubMed  Google Scholar 

  20. Kubow S (1996) The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis. J Nutr Biochem 7:530–541

    Article  CAS  Google Scholar 

  21. Redgrave T, Kodali D, Small D (1988) The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat. J Biol Chem 263:5118–5123

    CAS  PubMed  Google Scholar 

  22. Kritchevsky D, Tepper SA, Wright S, Kuksis A, Hughes TA (1998) Cholesterol vehicle in experimental atherosclerosis. 20. Cottonseed oil and randomized cottonseed oil. Nutr Res 18:259–264

    Article  CAS  Google Scholar 

  23. Yli-Jokipii K, Kallio H, Schwab U, Mykkänen H, Kurvinen JP, Savolainen MJ, Tahvonen R (2001) Effects of palm oil and transesterified palm oil on chylomicron and VLDL triacylglycerol structures and postprandial lipid response. J Lipid Res 42:1618–1625

    CAS  PubMed  Google Scholar 

  24. Karupaiah T, Sundram K (2007) Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 4:16–32

    Article  Google Scholar 

  25. Kritchevsky D, Tepper SA, Kuksis A, Eghtedary K, Klurfeld DM (1998) Cholesterol vehicle in experimental atherosclerosis. 21. Native and randomized lard and tallow. J Nutr Biochem 9:582–585

    Article  CAS  Google Scholar 

  26. Zampelas A, Williams CM, Morgan LM, Wright J, Quinlan P (1994) The effect of triacylglycerol fatty acid positional distribution on postprandial plasma metabolite and hormone responses in normal adult men. Br J Nutr 71:401–410

    Article  CAS  PubMed  Google Scholar 

  27. Hodge J, Li D, Redgrave TG, Sinclair AJ (1999) The metabolism of native and randomized butterfat chylomicrons in the rat is similar. Lipids 34:579–582

    Article  CAS  PubMed  Google Scholar 

  28. Sanders TAB, Filippou A, Berry SE, Baumgartner S, Mensink RP (2011) Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am J Clin Nutr 94:1433–1441

    Article  CAS  PubMed  Google Scholar 

  29. Zhao S, Hu J, Zhu X, Bai C, Peng H, Xiong H, Hu J, Zhao Q (2014) Characteristics and feasibility of trans-free plastic fats through Lipozyme TL IM-catalyzed interesterification of palm stearin and Akebia trifoliata Variety Australis seed oil. J Agric Food Chem 62:3293–3300

    Article  CAS  Google Scholar 

  30. Masuchi MH, Gandra KM, Gandra AL, Perenha C, Chiu MC, Grimaldi R, Gonçalves LA (2014) Fats from chemically interesterified high-oleic sunflower oil and fully hydrogenated palm oil. J Am Oil Chem Soc 91:859–866

    Article  CAS  Google Scholar 

  31. Adhikari P, Shin JA, Lee JH, Hu JN, Zhu XM, Akoh CC, Lee KT (2010) Production of trans-free margarine stock by enzymatic interesterification of rice bran oil, palm stearin and coconut oil. J Sci Food Agric 90:703–711

    CAS  PubMed  Google Scholar 

  32. Robinson DM, Martin NC, Robinson LE, Ahmadi L, Marangoni AG, Wright AJ (2009) Influence of interesterification of a stearic acid-rich spreadable fat on acute metabolic risk factors. Lipids 44:17–26

    Article  CAS  PubMed  Google Scholar 

  33. Berry SEE, Miller GJ, Sanders TAB (2007) The solid fat content of stearic acid-rich fats determines their postprandial effects. Am J Clin Nutr 85:1486–1494

    CAS  PubMed  Google Scholar 

  34. Sanders TAB, Berry SEE, Miller GJ (2003) Influence of triacylglycerol structure on the postprandial response of factor VII to stearic acid-rich fats. Am J Clin Nutr 77:777–782

    CAS  PubMed  Google Scholar 

  35. Aoyama T, Fukui K, Taniguchi K, Nagaoka S, Yamamoto T, Hashimoto Y (1996) Absorption and metabolism of lipids in rats depend on fatty acid isomeric position. J Nutr 126:225–231

    CAS  PubMed  Google Scholar 

  36. Carnielli V, Luijendijk I, Van Beek R, Boerma G, Degenhart H, Sauer P (1995) Effect of dietary triacylglycerol fatty acid positional distribution on plasma lipid classes and their fatty acid composition in preterm infants. Am J Clin Nutr 62:776–781

    CAS  PubMed  Google Scholar 

  37. de Fouw NJ, Kivits GAA, Quinlan PT, van Nielen WGL (1994) Absorption of isomeric, palmitic acid-containing triacylglycerols resembling human milk fat in the adult rat. Lipids 29:765–770

    Article  PubMed  Google Scholar 

  38. Lien EL, Boyle FG, Yuhas R, Tomarelli RM, Quinlan P (1997) The effect of triglyceride positional distribution on fatty acid absorption in rats. J Pediatr Gastroenterol Nutr 25:167–174

    Article  CAS  PubMed  Google Scholar 

  39. Lien EL, Yuhas RJ, Boyle FG, Tomarelli RM (1993) Corandomization of fats improves absorption in rats. J Nutr 123:1859–1867

    CAS  PubMed  Google Scholar 

  40. Lee JH, Son JM, Akoh CC, Kim MR, Lee KT (2010) Optimized synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus. New Biotechol 27:38–45

    Article  CAS  Google Scholar 

  41. Bonanome A, Grundy SM (1989) Intestinal absorption of stearic acid after consumption of high fat meals in humans. J Nutr 119:1556

    CAS  PubMed  Google Scholar 

  42. Denke MA, Grundy SM (1991) Effects of fats high in stearic acid on lipid and lipoprotein concentrations in men. Am J Clin Nutr 54:1036–1040

    CAS  PubMed  Google Scholar 

  43. Lee YS, Kang EY, Park MN, Choi YY, Jeon JW, Yun SS (2008) Effects of sn-2 palmitic acid-fortified vegetable oil and fructooligosaccharide on calcium metabolism in growing rats fed casein based diet. Nutr Res Pract 2:3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farfán M, Villalón MJ, Ortíz ME, Nieto S, Bouchon P (2013) The effect of interesterification on the bioavailability of fatty acids in structured lipids. Food Chem 139:571–577

    Article  PubMed  Google Scholar 

  45. Mortimer BC, Simmonds WJ, Joll CA, Stick RV, Redgrave TG (1988) Regulation of the metabolism of lipid emulsion model lipoproteins by a saturated acyl chain at the 2-position of triacylglycerol. J Lipid Res 29:713–720

    CAS  PubMed  Google Scholar 

  46. Clark SB, Derksen A (1987) Phosphatidylcholine composition of emulsions influences triacylglycerol lipolysis and clearance from plasma. Biochim Biophys Acta 920:37–46

    Article  CAS  PubMed  Google Scholar 

  47. Martins I, Mortimer B, Miller J, Redgrave T (1996) Effects of particle size and number on the plasma clearance of chylomicrons and remnants. J Lipid Res 37:2696–2705

    CAS  PubMed  Google Scholar 

  48. Porsgaard T, Kánský J, Mason S, Mu H (2005) Size and number of lymph particles measured by a particle sizer during absorption of structured oils in rats. Lipids 40:273–279

    Article  CAS  PubMed  Google Scholar 

  49. Berry SE, Sanders TAB (2005) Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia. Proc Nutr Soc 64:205–212

    Article  CAS  PubMed  Google Scholar 

  50. Jung HR, Turner SM, Neese RA, Young SG, Hellerstein MK (1999) Metabolic adaptations to dietary fat malabsorption in chylomicron-deficient mice. Biochem J 343:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruíz-Gutiérrez V, Prada J, Pérez-Jiménez F (1993) Determination of fatty acid and triacylglycerol composition of human very-low-density lipoproteins. J Chromatogr B 622:117–124

    Article  Google Scholar 

  52. Mora S, Rifai N, Buring JE, Ridker PM (2008) Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation 118:993–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De B, Ambrosioni E, Borch-Johnsen K (2003) European guidelines on cardiovascular disease and prevention in clinical practice. Atherosclerosis 171:145–155

    Article  Google Scholar 

  54. De Schrijver R, Vermeulen D, Viaene E (1991) Lipid metabolism responses in rats fed beef tallow, native or randomized fish oil and native or randomized peanut oil. J Nutr 121:948–955

    PubMed  Google Scholar 

  55. Ikeda I, Yoshida H, Tomooka M, Yosef A, Imaizumi K, Tsuji H, Seto A (1998) Effects of long-term feeding of marine oils with different positional distribution of eicosapentaenoic and docosahexaenoic acids on lipid metabolism, eicosanoid production, and platelet aggregation in hypercholesterolemic rats. Lipids 33:897–904

    Article  CAS  PubMed  Google Scholar 

  56. Nelson CM, Innis SM (1999) Plasma lipoprotein fatty acids are altered by the positional distribution of fatty acids in infant formula triacylglycerols and human milk. Am J Clin Nutr 70:62–69

    CAS  PubMed  Google Scholar 

  57. Renaud SC, Ruf JC, Petithory D (1995) The positional distribution of fatty acids in palm oil and lard influences their biologic effects in rats. J Nutr 125:229–237

    CAS  PubMed  Google Scholar 

  58. Kritchevsky D, Tepper SA, Chen SC, Meijer GW, Krauss RM (2000) Cholesterol vehicle in experimental atherosclerosis. 23. Effects of specific synthetic triglycerides. Lipids 35:621–625

    Article  CAS  PubMed  Google Scholar 

  59. Zock PL, De Vries J, de Fouw NJ, Katan MB (1995) Positional distribution of fatty acids in dietary triglycerides: effects on fasting blood lipoprotein concentrations in humans. Am J Clin Nutr 61:48–55

    CAS  PubMed  Google Scholar 

  60. Christophe AB, De Greyt WF, Delanghe JR, Huyghebaert AD (2000) Substituting enzymatically interesterified butter for native butter has no effect on lipemia or lipoproteinemia in man. Ann Nutr Metab 44:61–67

    Article  CAS  PubMed  Google Scholar 

  61. Grande F, Anderson JT, Keys A (1970) Comparison of effects of palmitic and stearic acids in the diet on serum cholesterol in man. Am J Clin Nutr 23:1184–1193

    CAS  PubMed  Google Scholar 

  62. Meijer G, Weststrate J (1997) Interesterification of fats in margarine: effect on blood lipids, blood enzymes, and hemostasis parameters. Eur J Clin Nutr 51:527–534

    Article  CAS  PubMed  Google Scholar 

  63. Nestel PJ, Noakes M, Belling GB, McArthur R, Clifton PM (1995) Effect on plasma lipids of interesterifying a mix of edible oils. Am J Clin Nutr 62:950–955

    CAS  PubMed  Google Scholar 

  64. Filippou A, Teng KT, Berry SE, Sanders TAB (2014) Palmitic acid in the sn-2 position of dietary triacylglycerols does not affect insulin secretion or glucose homeostasis in healthy men and women. Eur J Clin Nutr 68:1036–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316

    Article  CAS  PubMed  Google Scholar 

  66. Summers LKM, Fielding BA, Herd SL, Ilic V, Clark ML, Quinlan PT, Frayn KN (1999) Use of structured triacylglycerols containing predominantly stearic and oleic acids to probe early events in metabolic processing of dietary fat. J Lipid Res 40:1890–1898

    CAS  PubMed  Google Scholar 

  67. Yli-Jokipii KM, Schwab US, Tahvonen RL, Kurvinen JP, Mykkänen HM, Kallio HPT (2003) Chylomicron and VLDL TAG structures and postprandial lipid response induced by lard and modified lard. Lipids 38:693–703

    Article  CAS  PubMed  Google Scholar 

  68. Filippou A, Berry SE, Baumgartner S, Mensink RP, Sanders TAB (2014) Palmitic acid in the sn-2 position decreases glucose-dependent insulinotropic polypeptide secretion in healthy adults. Eur J Clin Nutr 68:549–554

    Article  CAS  PubMed  Google Scholar 

  69. Berry SEE, Woodward R, Yeoh C, Miller GJ, Sanders TAB (2007) Effect of interesterification of palmitic acid-rich triacylglycerol on postprandial lipid and factor VII response. Lipids 42:315–323

    Article  CAS  PubMed  Google Scholar 

  70. Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD (1997) The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Investig 100:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hunter JE (2001) Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 36:655–668

    Article  CAS  PubMed  Google Scholar 

  72. Andrews PC, Fraser BH, Junk PC, Massi M, Perlmutter P, Thienthong N (2008) Large-scale synthesis of both symmetrical and unsymmetrical triacylglycerols containing docosahexaenoic acid. Tetrahedron 64:9197–9202

    Article  CAS  Google Scholar 

  73. Wang X, Jin Q, Wang T, Huang J, Wang X (2013) An improved method for the synthesis of 1-monoolein. J Mol Catal B Enzym 97:130–136

    Article  CAS  Google Scholar 

  74. Tang W, Wang X, Huang J, Jin Q, Wang X (2015) A novel method for the synthesis of symmetrical triacylglycerols by enzymatic transesterification. Bioresour Technol 196:559–565

    Article  CAS  PubMed  Google Scholar 

  75. Wang X, Wang T, Spurlock ME, Wang X (2016) Effects of triacylglycerol structure and solid fat content on fasting responses of mice. Eur J Nutr 55:1545–1553

    Article  CAS  PubMed  Google Scholar 

  76. Rasoamanana R, Darcel N, Fromentin G, Tomé D (2012) Nutrient sensing and signalling by the gut. Proc Nutr Soc 1:1–10

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by “The Natural Science Foundation of Jiangsu Province (Grants No: BK20150137)” and “Program of Science and Technology Department of Jiangsu Province (Grants No: BY2016022-33)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Wang or Xiaosan Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, X. & Wang, X. Effects of Lipid Structure Changed by Interesterification on Melting Property and Lipemia. Lipids 51, 1115–1126 (2016). https://doi.org/10.1007/s11745-016-4184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4184-3

Keywords

Navigation