Skip to main content
Log in

Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly

  • Original Article
  • Published:
Lipids

Abstract

Huntington’s Disease (HD) is an autosomal dominant disease that occurs as a result of expansion of the trinucleotide repeat CAG (glutamine) on the HTT gene. HD patients exhibit various forms of mitochondrial dysfunction within neurons and peripheral tissues. Cardiolipin (Ptd2Gro) is a polyglycerophospholipid found exclusively in mitochondria and is important for maintaining mitochondrial function. We examined if altered Ptd2Gro metabolism was involved in the mitochondrial dysfunction associated with HD. Mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis were markedly diminished in Epstein-Barr virus transformed HD lymphoblasts compared to controls (CTRL). Mitochondrial supercomplex formation and Complex I activity within these supercomplexes did not vary between HD patients with different length of CAG repeats and appeared unaltered compared to CTRL. In contrast, in vitro Complex I enzyme activity in mitochondrial enriched samples was reduced in HD lymphoblasts compared to CTRL. The total cellular pool size of Ptd2Gro and its synthesis/remodeling from [3H]acetate/[14C]oleate were unaltered in HD lymphoblasts compared to CTRL. In addition, the molecular species of Ptd2Gro were essentially unaltered in HD lymphoblasts compared to CTRL. We conclude that compared to CTRL lymphoblasts, HD lymphoblasts display impaired mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis with any pathological CAG repeat length, but this is not due to alterations in Ptd2Gro metabolism. We suggest that HD patient lymphoblasts may be a useful model to study defective energy metabolism that does not involve alterations in Ptd2Gro metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HD:

Huntington’s Disease (HD)

Ptd2Gro:

Cardiolipin

CTRL:

Control

HTT:

Huntingtin protein

BN-PAGE:

Blue native polyacrylamide gel electrophoresis

ECAR:

Extracellular acidification rate

NADH:

Nicotinamide adenine dinucleotide

DDM:

N-Dodecyl β-d-maltoside

OCR:

Oxygen consumption rate

ATP:

Adenosine triphosphate

References

  1. White DA (1973) Form and function of phospholipids. In: Ansell GB, Hawthorne JN, Dawson RM (eds) Phospholipids. Elsevier Biomedical, Amsterdam

  2. Poorthuis BJ, Yazaki PJ, Hostetler KY (1976) An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res 17(4):433–437

    CAS  PubMed  Google Scholar 

  3. Hostetler KY (1982) Polyglycerophospholipids: phosphatidylglycerol, diphosphatidylglycerol, and bis (monoacylglycero) phosphate. In: Hawthorne JN, Ansell GB (eds) Phospholipids. Elsevier Biomedical, Amsterdam

  4. Hatch GM (2004) Cell biology of cardiac mitochondrial phospholipids. Biochem Cell Biol Biochim et Biol Cell 82(1):99–112

    Article  CAS  Google Scholar 

  5. Schlame M et al (2003) Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 42(11):1994–1999

    Article  CAS  PubMed  Google Scholar 

  6. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277(46):43553–43556

    Article  CAS  PubMed  Google Scholar 

  7. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228

    Article  CAS  PubMed  Google Scholar 

  8. Schneider SA, Walker RH, Bhatia KP (2007) The Huntington’s disease-like syndromes: what to consider in patients with a negative Huntington’s disease gene test. Nat Clin Pract Neurol 3(9):517–525

    Article  CAS  PubMed  Google Scholar 

  9. Harper PS (1992) The epidemiology of Huntington’s disease. Hum Genet 89(4):365–376

    Article  CAS  PubMed  Google Scholar 

  10. Pringsheim T et al (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27(9):1083–1091

    Article  PubMed  Google Scholar 

  11. Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacDonald ME et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72(6):971–983

    Article  Google Scholar 

  13. Kremer B et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330(20):1401–1406

    Article  CAS  PubMed  Google Scholar 

  14. Andrew SE et al (1994) Huntington disease without CAG expansion: phenocopies or errors in assignment? Am J Hum Genet 54(5):852–863

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sassone J et al (2009) Huntington’s disease: the current state of research with peripheral tissues. Exp Neurol 219(2):385–397

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira JM (2010) Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on huntingtin and the striatum. J Neurochem 114(1):1–12

    CAS  PubMed  Google Scholar 

  17. Yano H et al (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 17(6):822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa V, Scorrano L (2012) Shaping the role of mitochondria in the pathogenesis of Huntington’s disease. EMBO J 31(8):1853–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reddy PH (2014) Increased mitochondrial fission and neuronal dysfunction in Huntington’s disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today 19(7):951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo X et al (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123(12):5371–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jourdain A, Martinou JC (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41(10):1884–1889

    Article  CAS  PubMed  Google Scholar 

  22. Kuwana T et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalvez F et al (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183(4):681–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi SY et al (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8(11):1255–1262

    Article  CAS  PubMed  Google Scholar 

  25. Xu FY et al (2010) The dynamics of cardiolipin synthesis post-mitochondrial fusion. Biochim Biophys Acta 1798(8):1577–1585

    Article  CAS  PubMed  Google Scholar 

  26. Kegel KB et al (2009) Polyglutamine expansion in huntingtin alters its interaction with phospholipids. J Neurochem 110(5):1585–1597

    Article  CAS  PubMed  Google Scholar 

  27. Hatch GM, McClarty G (1996) Regulation of cardiolipin biosynthesis in H9c2 cardiac myoblasts by cytidine 5′-triphosphate. J Biol Chem 271(42):25810–25816

    Article  CAS  PubMed  Google Scholar 

  28. Sparagna GC et al (2005) Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J Lipid Res 46(6):1196–1204

    Article  CAS  PubMed  Google Scholar 

  29. Mejia EM, Cole L, Hatch GM (2014) Cardiolipin metabolism and the role it plays in heart failure and mitochondrial supercomplex formation. Cardiovasc Haematol Disord Drug Targets 14(2):98–106

    Article  CAS  Google Scholar 

  30. Zheng XX et al (1990) Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies. Biochim Biophys Acta 1019(1):1–10

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  32. Schlame M et al (2002) Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann Neurol 51(5):634–637

    Article  CAS  PubMed  Google Scholar 

  33. McKenzie M et al (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361(3):462–469

    Article  CAS  PubMed  Google Scholar 

  34. van Gestel RA et al (2010) The influence of the acyl chain composition of cardiolipin on the stability of mitochondrial complexes; an unexpected effect of cardiolipin in alpha-ketoglutarate dehydrogenase and prohibitin complexes. J Proteom 73(4):806–814

    Article  Google Scholar 

  35. Gourane C et al (2013) Early deficits in glycolysis are specific to striatal neurons from a rat model of Huntington disease. PLoS One 8(11):e81528

    Article  Google Scholar 

  36. Parker WD Jr et al (1990) Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40(8):1231–1234

    Article  PubMed  Google Scholar 

  37. Bazzett TJ et al (1993) Chronic intrastriatal dialytic administration of quinolinic acid produces selective neural degeneration. Exp Neurol 120(2):177–185

    Article  CAS  PubMed  Google Scholar 

  38. Novelli A et al (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451(1–2):205–212

    Article  CAS  PubMed  Google Scholar 

  39. Brouillet E et al (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 60(1):356–359

    Article  CAS  PubMed  Google Scholar 

  40. Damiano M et al (2013) A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22(19):3869–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner C, Cooper JM, Schapira AH (2007) Clinical correlates of mitochondrial function in Huntington’s disease muscle. Mov Disord 22(12):1715–1721

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fred Y. Xu for technical assistance. This work was supported by grants from the Huntington Society of Canada (S.S. & G.M.H.), Canadian Institutes of Health Research MOP 111219 (S.S.) and the Heart and Stroke Foundation of Canada G-14-0005708 (G.M.H.) E.M.M. is the recipient of a Children’s Hospital Research Institute of Manitoba—Research Manitoba Ph.D. studentship. S.S. is a Canada Research Chair in Neurobiology of Huntington Disease. G.M.H. is a Canada Research Chair in Molecular Cardiolipin Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant M. Hatch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16 kb)

Supplementary material 2 (PDF 122 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejia, E.M., Chau, S., Sparagna, G.C. et al. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly. Lipids 51, 561–569 (2016). https://doi.org/10.1007/s11745-015-4110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4110-0

Keywords

Navigation