Skip to main content
Log in

High Sucrose Intake Ameliorates the Accumulation of Hepatic Triacylglycerol Promoted by Restraint Stress in Young Rats

  • Original Article
  • Published:
Lipids

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Stress promotes the onset of the NAFLD with a concomitant increment in the activity of the hepatic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1). However, the interaction between the stress and a carbohydrate-enriched diet for the development of NAFLD in young animals is unknown. In the present study, we evaluated the impact of chronic stress on the hepatic triacylglycerol level of young rats fed or not with a high sucrose-diet. For doing this, 21-day old male Wistar rats were allocated into 4 groups: control (C), chronic restraint stress (St), high-sucrose diet (S30), and chronic restraint stress plus a 30 % sucrose diet (St + S30). Chronic restraint stress consisted of 1-hour daily session, 5 days per week and for 4 weeks. Rats were fed with a standard chow and tap water (C group) or 30 % sucrose diluted in water (S30 group). The St + S30 groups consumed less solid food but had an elevated visceral fat accumulation in comparison with the St group. The St group showed a high level of serum corticosterone and a high activity of the hepatic 11β-HSD-1 concomitantly to the augmentation of hepatic steatosis signs, a high hepatic triacylglycerol content, and hepatic oxidative stress. Conversely, the high-sucrose intake in stressed rats (St + S30 group) reduced the hepatic 11β-HSD-1 activity, the level of serum corticosterone, and the hepatic triacylglycerol content. Present findings show that a high-sucrose diet ameliorates the triacylglycerol accumulation in liver promoted by the restraint stress in young male rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H–E:

Hematoxylin and eosin

HPA:

Hypothalamic-pituitary-adrenal axis

11β-HSD-1:

11β-Hydroxysteroid dehydrogenase type 1

MCP-1:

Monocyte chemoattractant protein-1

NAFLD:

Non-alcoholic fatty liver disease

NAS:

Non-alcoholic steatosis activity scores

NADPH:

Nicotinamide adenine dinucleotide phosphate

3-NTyr:

3-Nitrotyrosine

PBS:

Phosphate-buffered saline

TAG:

Triacylglycerol

TNFα:

Tumor necrosis factor alpha

VLDL:

Very low density lipoprotein

References

  1. Del Ben M, Polimeni L, Baratta F, Pastori D, Loffredo L, Angelico F (2014) Modern approach to the clinical management of non-alcoholic fatty liver disease. World J Gastroenterol 20:8341–8350

    Article  PubMed Central  PubMed  Google Scholar 

  2. Scorletti E, Calder PC, Byrne CD (2011) Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments. Endocrine 40:332–343

    Article  CAS  PubMed  Google Scholar 

  3. Manti S, Romano C, Chirico V, Filippelli M, Cuppari C, Loddo I, Salpietro C, Arrigo T (2014) Nonalcoholic fatty liver disease/non-alcoholic steatohepatitis in childhood; endocrine-metabolic “mal-programming”. Hepat Mon 14:e17641

    PubMed Central  PubMed  Google Scholar 

  4. Lee JH, Friso S, Choi SW (2014) Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients 6:3303–3325

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sun C, Fan JG, Qiao L (2015) Potential epigenetic mechanism in non-alcoholic fatty liver disease. Int J Mol Sci 16:5161–5179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kyrou I, Tsigos C (2007) Stress mechanisms and metabolic complications. Horm Metab Res 39:430–438

    Article  CAS  PubMed  Google Scholar 

  7. Holvoet P (2012) Stress in obesity and associated metabolic and cardiovascular disorders. Scientifica (Cairo). doi:10.6064/2012/205027

    Google Scholar 

  8. Liu YZ, Chen JK, Zhang Y, Wang X, Qu S, Jiang CL (2014) Chronic stress induces steatohepatitis while decreases visceral fat mass in mice. BMC Gastroenterol 14:106

    Article  PubMed Central  PubMed  Google Scholar 

  9. Czech B, Neumann ID, Müller M, Reber SO, Hellerbrand C (2013) Effect of chronic psychosocial stress on nonalcoholic steatohepatitis in mice. Int J Clin Exp Pathol 6(8):1585–1593

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Macedo IC, Medeiros LF, Oliveira C, Oliveira CM, Rozisky JR, Scarabelot VL, Souza A, Silva FR, Santos VS, Cioato SG, Caumo W, Torres IL (2012) Cafeteria diet-induced obesity plus chronic stress alter serum leptin levels. Peptides 38:189–196

    Article  CAS  PubMed  Google Scholar 

  11. Altuna ME, Lelli SM, Martín San, de Viale LC, Damasco MC (2006) Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism. Can J Physiol Pharmacol 84:977–984

    Article  CAS  PubMed  Google Scholar 

  12. Franco-Colin M, Tellez-Lopez AM, Quevedo-Corona L, Racotta R (2000) Effects of long-term high-sucrose and dexamethasone on fat depots, liver fat, and lipid fuel fluxes through the retroperitoneal adipose tissue and splanchnic area in rats. Metabolism 49(10):1289–1294

    Article  CAS  PubMed  Google Scholar 

  13. De Ruyter JC, Olthof MR, Kuijper LD, Katan MB (2012) Effect of sugar-sweetened beverages on body weight in children: design and baseline characteristics of the double-blind, randomized intervention study in kids. Contemp Clin Trials 33:247–257

    Article  PubMed  Google Scholar 

  14. Lashansky G, Saenger P, Dimartino-Nardi J, Gautier T, Mayes D, Berg G, Reiter E (1992) Normative data for the steroidogenic response of mineralocorticoids and their precursors to adrenocorticotropin in a healthy pediatric population. J Clin Endocrinol Metab 75(6):1491–1496

    CAS  PubMed  Google Scholar 

  15. Palmert MR, Hayden DL, Mansfield MJ, Crigler JF Jr, Crowley WE Jr, Chandler DW, Boepple PA (2001) The longitudinal study of adrenal maturation during gonadal suppression: evidence that adrenarche is a gradual process. J Clin Endocrinol Metab 86(9):4536–4542

    Article  CAS  PubMed  Google Scholar 

  16. Meikle AW, Kushnir MM, Rockwood AL, Pattison EG, Terry AH, Sandrock T, Bunker AM, Phanslkar AR, Owen WE, Roberts WL (2007) Adrenal steroid concentrations in children seven to seventeen years of age. J Pediatr Endocrinol Metab 20(12):1281–1291

    Article  CAS  PubMed  Google Scholar 

  17. Mouritsen A, Johansen ML, Wohlfahrt-Veje C, Hagen CP, Tinggaard J, Mieritz MG, Tefre de Renzy-Martin K, Soeborg T, Fallentin E, Juul A, Main KM (2014) Determination of adrenal volume by MRI in healthy children: associations with age, body size, pubertal stage and serum levels of adrenal androgens. Clin Endocrinol (Oxf) 81(2):183–189

    Article  CAS  Google Scholar 

  18. Lee C, Tsenkova V, Carr D (2014) Childhood trauma and metabolic syndrome in men and women. Soc Sci Med 105:122–130

    Article  PubMed Central  PubMed  Google Scholar 

  19. van Andel HW, Jansen LM, Grietens H, Knorth EJ, van der Gaag RJ (2014) Salivary cortisol: a possible biomarker in evaluating stress and effects of interventions in young foster children? Eur Child Adolesc Psychiatry 23(1):3–12

    Article  PubMed  Google Scholar 

  20. Díaz-Aguila Y, Castelán F, Cuevas E, Zambrano E, Martínez-Gómez M, Muñoz A, Rodríguez-Antolín J, Nicolás-Toledo L (2015) Consumption of sucrose from infancy increases the visceral fat accumulation, concentration of triglycerides, insulin and leptin, and generates abnormalities in the adrenal gland. Anat Sci Int. doi:10.1007/s12565-015-0279-9

    PubMed  Google Scholar 

  21. Brunt EM (2007) Pathology of fatty liver disease. Modern Pathol 20:S40–S48

    Article  CAS  Google Scholar 

  22. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  23. Luna-Moreno D, García-Ayala B, Díaz-Muñoz M (2012) Daytime restricted feeding modifies 24 rhythmicity and subcellular distribution of liver glucocorticoid receptor and the urea cycle in rat liver. Br J Nutr 108:2002–2013

    Article  CAS  PubMed  Google Scholar 

  24. Bruder-Nascimento T, Campos DH, Alves C, Thomaz S, Cicogna AC, Cordellini S (2013) Effects of chronic stress and high-fat diet on metabolic and nutritional parameters in Wistar rats. Arq Bras Endocrinol Metabol 57(8):642–649

    Article  PubMed  Google Scholar 

  25. Arcego DM, Krolow R, Lampert C, Noschang C, Ferreira AG, Scherer E, Wyse AT, Dalmaz C (2014) Isolation during the prepubertal period associated with chronic access to palatable diets: effects on plasma lipid profile and liver oxidative stress. Physiol Behav 124:23–32

    Article  CAS  PubMed  Google Scholar 

  26. de Oliveira C, Scarabelot VL, de Souza A, de Oliveira CM, Medeiros LF, de Macedo IC, Marques Filho PR, Cioato SG, Caumo W, Torres IL (2014) Obesity and chronic stress are able to desynchronize the temporal pattern of serum levels of leptin and triglycerides. Peptides 51:46–53

    Article  PubMed  Google Scholar 

  27. Vargovic P, Ukropec J, Laukova M, Kurdiova T, Balaz M, Manz B, Ukropcova B, Kvetnansky R (2013) Repeated immobilization stress induces catecholamine production in rat mesenteric adipocytes. Stress 16:340–352

    Article  CAS  PubMed  Google Scholar 

  28. Velkoska E, Cole TJ, Dean RG, Burrell LM, Morris MJ (2008) Early undernutrition leads to long-lasting reductions in body weight and adiposity whereas increased intake increases cardiac fibrosis in male rats. J Nutr 138:1622–1627

    CAS  PubMed  Google Scholar 

  29. Rodrigues AL, de Moura EG, Passos MC, Dutra SC, Lisboa PC (2009) Postnatal early overnutrition changes the leptin signalling pathway in the hypothalamic-pituitary-thyroid axis of young and adult rats. J Physiol 587:2647–2661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Fuente-Martín E, García-Cáceres C, Granado M, Sánchez-Garrido MA, Tena-Sempere M, Frago LM, Argente J, Chowen JA (2012) Early postnatal overnutrition increases adipose tissue accrual in response to a sucrose-enriched diet. Am J Physiol Endocrinol Metab 302:1586–1598

    Article  Google Scholar 

  31. Cervantes-Rodríguez M, Martínez-Gómez M, Cuevas E, Nicolás L, Castelán F, Nathanielsz PW, Zambrano E, Rodríguez-Antolín J (2014) Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect. Br J Nutr 111:616–624

    Article  PubMed  Google Scholar 

  32. El Hafidi M, Cuéllar A, Ramírez J, Baños G (2001) Effect of sucrose addition to drinking water, that induces hypertension in the rats, on liver microsomal Delta9 and Delta5-desaturase activities. J Nutr Biochem 12:396–403

    Article  CAS  PubMed  Google Scholar 

  33. El Hafidi M, Pérez I, Zamora J, Soto V, Carvajal-Sandoval G, Baños G (2004) Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol 287:R1387–R1393

    Article  PubMed  Google Scholar 

  34. Alexander AA, Hernández DG, Lara BM, Angulo G, Oliart RR (2004) Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-α in rats with sucrose-induce metabolic syndrome. J Nutr Biochem 15:350–357

    Article  Google Scholar 

  35. Levin BE, Richard D, Michel C, Servatius R (2000) Differential stress responsivity in diet-induced obese and resistant rats. Am J Physio Regul Integr Comp Physiol 279:R1357–R1364

    CAS  Google Scholar 

  36. Laugero KD (2001) A new perspective on glucocorticoid feedback: relation to stress, carbohydrate feeding and feeling better. J Neuroendocrinol 13:827–835

    Article  CAS  PubMed  Google Scholar 

  37. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF (2004) Chronic stress promotes palatable feeding, which reduces signs of stress. Feed forward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    Article  CAS  PubMed  Google Scholar 

  38. Pecoraro N, Gomez F, Dallman MF (2005) Glucocorticoids dose-dependently remodel energy stores and amplify incentive relativity effects. Psychoneuroendocrinology 30:815–825

    Article  CAS  PubMed  Google Scholar 

  39. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458

    Article  CAS  PubMed  Google Scholar 

  40. Bell ME, Bhargava AQ, Soriano L, Laugero K, Akana SF, Dallman MF (2002) Sucrose intake and corticosterone interact with cold to modulate ingestive behavior, energy balance, autonomic outflow and neuroendocrine responses during chronic stress. J Neuroendocrinol 14:330–342

    Article  CAS  PubMed  Google Scholar 

  41. Vasiljević A, Bursać B, Djordjević A, Milutinović DV, Nikolić M, Martić G, Veličković N (2014) Hepatic inflammation induced by high-fructose diet is associated with altered 11βHSD1 expression in the liver of Wistar rats. Eur J Nutr 53:1393–1402

    Article  PubMed  Google Scholar 

  42. Stimson RH, Walker BR (2007) Glucocorticoids and 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Minerva Endocrinol 32:141–159

    CAS  PubMed  Google Scholar 

  43. London E, Castonguay WT (2009) Diet and the role of 11β-hydroxysteroid dehydrogenase-1 on obesity. J Nutr Biochem 20:485–493

    Article  CAS  PubMed  Google Scholar 

  44. Brown RW, Chapman KE, Edwards CRW, Seckel JR (1993) Human placental 11β-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent iso-form. Endocrinology 132:2614–2621

    CAS  PubMed  Google Scholar 

  45. London E, Castonguay TW (2009) Diet and the role of 11β-hydroxysteroid dehydrogenase-1 on obesity. J Nutr Biochem 20(7):485–493

    Article  CAS  PubMed  Google Scholar 

  46. Kim JH, Choi JH (2013) Pathophysiology and clinical characteristics of hypothalamic obesity in children and adolescents. Ann Pediatr Endocrinol Metab 18(4):161–167

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hanada S, Harada M, Kumemura H, Omary MB, Kawaguchi T, Taniguchi E, Koga H, Yoshida T, Maeyama M, Baba S, Ueno T, Sata M (2005) Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components. Exp Cell Res 304(2):471–482

    Article  CAS  PubMed  Google Scholar 

  48. Albano E, Mottaran E, Occhino G, Reale E, Vidali M (2005) Role of oxidative stress in the progression of non-alcoholic steatosis. Aliment Pharmacol Ther 22(Suppl 2):71–73

    Article  PubMed  Google Scholar 

  49. Ji C, Kaplowitz N (2006) ER stress: can the liver cope? J Hepatol 45:321–333

    Article  CAS  PubMed  Google Scholar 

  50. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, Sanyal AJ (2008) Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134(2):568–576

    Article  CAS  PubMed  Google Scholar 

  51. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ, Nonalcoholic Steatohepatitis Clinical Research Network (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321

    Article  PubMed  Google Scholar 

  52. Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Ünalp A, NASH Clinical Research Network (2008) Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol 48(5):829–834

    Article  PubMed Central  PubMed  Google Scholar 

  53. Anderson EL, Howe LD, Fraser A, Macdonald-Wallis C, Callaway MP, Sattar N, Day C, Tilling K, Lawlor DA (2015) Childhood energy intake is associated with nonalcoholic fatty liver disease in adolescents. J Nutr 145(5):983–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Adiels M, Taskinen MR, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Häkkinen A, Olofsson SO, Yki-Järvinen H, Borén J (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49(4):755–765

    Article  CAS  PubMed  Google Scholar 

  55. Fu JH, Sun HS, Wang Y, Zheng WQ, Shi ZY, Wang QJ (2010) The effects of a fat-and sugar-enriched diet and chronic stress on nonalcoholic fatty liver disease in male Wistar rats. Dig Dis Sci 55:2227–2236

    Article  CAS  PubMed  Google Scholar 

  56. Han Y, Lin M, Wang X, Guo K, Wang S, Sun M, Wang J, Han X, Fu T, Hu Y, Fu J (2014) Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat. Endocrine 48:483–492

    Article  PubMed  Google Scholar 

  57. Packard AE, Ghosal S, Herman JP, Woods SC, Ulrich-Lai YM (2014) Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology 47:178–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mantena SK, Vaughn DP, Andringa KK, Eccleston HB, King AL, Abrams GA, Doeller JE, Kraus DW, Darley-Usmar VM, Bailey SM (2009) High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochem J 417:183–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Maniam J, Antoniadis C, Morris MJ (2014) Early-life stress, HPA axis adaptation, and mechanisms contributing to later health outcomes. Front Endocrinol (Lausanne) 5:1–17

    Google Scholar 

  60. Zafir A, Banu N (2009) Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress 12(2):167–177

    Article  CAS  PubMed  Google Scholar 

  61. Blouet C, Mariotti F, Azzout-Marniche D, Mathé V, Mikogami T, Tomé D, Huneau JF (2007) Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistence. Free Radic Biol Med 42(7):1089–1097

    Article  CAS  PubMed  Google Scholar 

  62. Raza H, John A, Howarth FC (2015) Increased oxidative stress and mitochondrial dysfunction in Zucker diabetic rat liver and brain. Cell Physiol Biochem 35(3):1241–1251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Consejo Nacional de Ciencia y Tecnología as a pre-doctoral fellowship (Reg. 417844) to ACP, PNPC C-122/2014, and 225126 Apoyo de Infraestructura al Cuerpo Académico Fisiología del Comportamiento, UATx). The authors are grateful for the expert technical assistance of Laura García, and Alvaro Muñoz for the critical review of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Nicolás-Toledo.

Ethics declarations

Conflict of interest

The authors report having no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corona-Pérez, A., Díaz-Muñoz, M., Rodríguez, I.S. et al. High Sucrose Intake Ameliorates the Accumulation of Hepatic Triacylglycerol Promoted by Restraint Stress in Young Rats. Lipids 50, 1103–1113 (2015). https://doi.org/10.1007/s11745-015-4066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4066-0

Keywords

Navigation