Skip to main content
Log in

Milk Phospholipids Enhance Lymphatic Absorption of Dietary Sphingomyelin in Lymph-Cannulated Rats

  • Original Article
  • Published:
Lipids

Abstract

Supplementation with sphingomyelin has been reported to have beneficial effects on disease prevention and health maintenance. However, compared with glycerolipids, intact sphingomyelin and ceramides are poorly absorbed. Therefore, if the bioavailability of dietary sphingomyelin is increased, then the dose administered can be reduced. This study was designed to identify molecular species of ceramide in rat lymph after the ingestion of milk sphingomyelin, and to compare the effect of purified sphingomyelin with milk phospholipids concentrate (MPL, 185 mg sphingomyelin/g) on lymphatic absorption of milk sphingomyelin. Lymph was collected hourly for 6 h from lymph-cannulated rats (n = 8/group) after the administration of a control emulsion (triolein, bovine serum albumin, and sodium taurocholate), a sphingomyelin emulsion (control + purified sphingomyelin), or a MPL emulsion (control + MPL). Molecular species of ceramide in lymph were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). Molecular species of ceramide, containing not only d18:1, but also d17:1 and d16:1 sphingosine with 16:0, 22:0, 23:0, and 24:0 fatty acids (specific to milk sphingomyelin), were increased in rat lymph after the administration of milk sphingomyelin. Their molecular species were similar to those of dietary milk sphingomyelin. Recovery of ceramide moieties from dietary sphingomyelin was 1.28- to 1.80-fold significantly higher in the MPL group than in the sphingomyelin group. Our results demonstrated that dietary sphingomyelin from milk was transported to lymph as molecular species of ceramide hydrolyzed from milk sphingomyelin and co-ingestion of sphingomyelin with glycerophospholipids enhanced the bioavailability of dietary sphingomyelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HPLC–MS/MS:

High-performance liquid chromatography–tandem mass spectrometry

MPL:

Milk phospholipids

MRM:

Multiple-reaction-monitoring

References

  1. Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129:1239–1250

    CAS  PubMed  Google Scholar 

  2. Zeisel SH, Char D, Sheard NF (1986) Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J Nutr 116:50–58

    CAS  PubMed  Google Scholar 

  3. Zeisel SH, Mar MH, Howe JC, Holden JM (2003) Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133:1302–1307

    CAS  PubMed  Google Scholar 

  4. Watanabe S, Takahashi T, Tanaka L, Haruta Y, Shiota M, Hosokawa M, Miyashita K (2011) The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-Ay). J Funct Foods 3:313–320

    Article  CAS  Google Scholar 

  5. Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH Jr (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 56:4936–4941

    CAS  PubMed  Google Scholar 

  6. Schmelz EM, Bushnev AS, Dillehay DL, Liotta DC, Merrill AH Jr (1997) Suppression of aberrant colonic crypt foci by synthetic sphingomyelins with saturated or unsaturated sphingoid base backbones. Nutr Cancer 28:81–85

    Article  CAS  PubMed  Google Scholar 

  7. Haruta Y, Kato K, Yoshioka T (2008) Dietary phospholipid concentrate from bovine milk improves epidermal function in hairless mice. Biosci Biotechnol Biochem 72:2151–2157

    Article  CAS  PubMed  Google Scholar 

  8. Haruta-Ono Y, Setoguchi S, Ueno HM, Higurashi S, Ueda N, Kato K, Saito T, Matsunaga K, Takata J (2012) Orally administered sphingomyelin in bovine milk is incorporated into skin sphingolipids and is involved in the water-holding capacity of hairless mice. J Dermatol Sci 68:56–62

    Article  CAS  PubMed  Google Scholar 

  9. Morifuji M, Oba C, Ichikawa S, Ito K, Kawahata K, Asami Y, Ikegami S, Itoh H, Sugawara T (2015) A novel mechanism for improvement of dry skin by dietary milk phospholipids: effect on epidermal covalently bound ceramides and skin inflammation in hairless mice. J Dermatol Sci 78:224–231

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson A (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164:575–584

    Article  CAS  PubMed  Google Scholar 

  11. Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124:702–712

    CAS  PubMed  Google Scholar 

  12. Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51:1761–1769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Byrdwell WC, Perry RH (2007) Liquid chromatography with dual parallel mass spectrometry and 31P nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin. II. Bovine milk sphingolipids. J Chromatogr A 1146:164–185

    Article  CAS  PubMed  Google Scholar 

  14. Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, Togni S, Dixon BM (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74:664–669

    Article  CAS  PubMed  Google Scholar 

  15. Jager R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM (2014) Comparative absorption of curcumin formulations. Nutr J 13:11

    Article  PubMed Central  PubMed  Google Scholar 

  16. Blaas N, Schuurmann C, Bartke N, Stahl B, Humpf HU (2011) Structural profiling and quantification of sphingomyelin in human breast milk by HPLC–MS/MS. J Agric Food Chem 59:6018–6024

    Article  CAS  PubMed  Google Scholar 

  17. Green PH, Glickman RM (1981) Intestinal lipoprotein metabolism. J Lipid Res 22:1153–1173

    CAS  PubMed  Google Scholar 

  18. Green PH, Riley JW (1981) Lipid absorption and intestinal lipoprotein formation. Aust N Z J Med 11:84–90

    Article  CAS  PubMed  Google Scholar 

  19. Carey MC, Small DM (1978) The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 61:998–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hegardt FG, Dam H (1971) The solubility of cholesterol in aqueous solutions of bile salts and lecithin. Z Ernahrungswiss 10:223–233

    Article  CAS  PubMed  Google Scholar 

  21. Nishimukai M, Hara H (2004) Enteral administration of soybean phosphatidylcholine enhances the lymphatic absorption of lycopene, but reduces that of alpha-tocopherol in rats. J Nutr 134:1862–1866

    CAS  PubMed  Google Scholar 

  22. Sperling P, Zahringer U, Heinz E (1998) A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J Biol Chem 273:28590–28596

    Article  CAS  PubMed  Google Scholar 

  23. Sperling P, Libisch B, Zahringer U, Napier JA, Heinz E (2001) Functional identification of a delta8-sphingolipid desaturase from Borago officinalis. Arch Biochem Biophys 388:293–298

    Article  CAS  PubMed  Google Scholar 

  24. Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T (2010) Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 45:451–455

    Article  CAS  PubMed  Google Scholar 

  25. Ueda K, Yoshida A, Amachi T (1999) Recent progress in P-glycoprotein research. Anticancer Drug Des 14:115–121

    CAS  PubMed  Google Scholar 

  26. Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68:2541–2546

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Morifuji.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morifuji, M., Higashi, S., Oba, C. et al. Milk Phospholipids Enhance Lymphatic Absorption of Dietary Sphingomyelin in Lymph-Cannulated Rats. Lipids 50, 987–996 (2015). https://doi.org/10.1007/s11745-015-4054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4054-4

Keywords

Navigation