Skip to main content
Log in

Separation and Identification of Odd Chain Triacylglycerols of the Protozoan Khawkinea quartana and the Mold Mortierella alpina Using LC–MS

  • Methods
  • Published:
Lipids

Abstract

Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC–MS/APCI) with reversed- and chiral phases was used for separation of triacylglycerols (TAG) from protozoan and mold. This study describes the separation and identification of odd numbered chains of regioisomers and enantiomers of triacylglycerols from different natural sources, i.e., the protozoan Khawkinea quartana and the mold Mortierella alpina. Using the above-mentioned separation methods and the synthesis of appropriate standards of TAG, we identified regioisomers and enantiomers of both even and odd numbered TAG. The biosynthesis of odd numbered TAG was found to be strictly stereospecific and to depend on the production microorganism, one enantiomer predominating in the protozoan and the other in the mold. It was proved that even numbered TAG are synthesized in a higher optical purity, which can be explained by a higher affinity of acyltransferases to the respective substrate, i.e., to even chain PUFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

APCI:

Atmospheric pressure chemical ionization

CCF:

Culture Collection of Fungi, Faculty of Science, Charles University, Prague

DB:

Double bonds

DMAP:

4-Dimethylaminopyridine

EDCI:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

ESI:

Electrospray ionization

FA:

Fatty acid(s)

FAME:

Fatty acid methyl ester(s)

iPrOH:

2-Propanol

L:

Linoleic acid

LC–MS/APCI:

Liquid chromatography-mass spectrometry/atmospheric pressure chemical ionization

Ln:

Linolenic acid

M:

Myristic acid

Ma:

Margaric acid

MEA:

Malt extract agar

Mo:

Margaroleic acid

MS2 :

Tandem mass spectrometry

NARP-LC:

Non aqueous reversed phase-liquid chromatography

NLS:

Neutral loss scan

O:

Oleic acid

ORD:

Optical rotatory dispersion

P:

Palmitic acid

PUFA:

Polyunsaturated fatty acid(s)

S:

Stearic acid

SAG:

Culture Collection of Algae at the University of Gottingen, Germany

TAG:

Triacylglycerol(s)

TIC:

Total ion current

References

  1. Rezanka T, Sigler K (2009) Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progr Lip Res 48:206–238

    Article  CAS  Google Scholar 

  2. Schlenk H (1971) Odd numbered polyunsaturated fatty acids. Prog Chem Fats Lipids 9:587–605

    Article  Google Scholar 

  3. Diedrich M, Henschel KP (1990) The natural occurrence of unusual fatty acids Part 1. Odd numbered fatty acids. Die Nahrung 34:935–943

    Article  CAS  Google Scholar 

  4. Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM, Dewhurst RJ (2006) Factors affecting odd- and branched-chain fatty acids in milk: a review. Animal Feed Sci Technol 131:389–417

    Article  CAS  Google Scholar 

  5. Kalo P, Kemppinen A, Ollilainen V (2009) Determination of triacylglycerols in butterfat by normal-phase HPLC and electrospray-tandem mass spectrometry. Lipids 44:169–195

    Article  CAS  PubMed  Google Scholar 

  6. Holcapek M, Jandera P, Zderadicka P, Hruba L (2003) Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1010:195–215

    Article  CAS  PubMed  Google Scholar 

  7. Cherif AO, Leveque N, Messaouda MB, Kallel H, Tchapla A, Moussa F (2014) NARP-HPLC/MS5 and silver cationization fingerprinting of triacylglycerols in wild and cultivar Tunisian peanut kernels. LWT—Food Sci Tech 57:236–242

    CAS  Google Scholar 

  8. Rezanka T, Schreiberova O, Krulikovska T, Masak J, Sigler K (2010) RP-HPLC/MS-APCI analysis of odd-chain TAGs from Rhodococcus erythropolis including some regioisomers. Chem Phys Lipids 163:373–380

    Article  CAS  PubMed  Google Scholar 

  9. Schreiberova O, Krulikovska T, Sigler K, Cejkova A, Rezanka T (2010) RP-HPLC/MS-APCI analysis of branched chain tag prepared by precursor-directed biosynthesis with Rhodococcus erythropolis. Lipids 45:743–756

    Article  CAS  PubMed  Google Scholar 

  10. Vasskog T, Andersen JH, Hansen E, Svenson J (2012) Characterization and cytotoxicity studies of the rare 21:4n-7 acid and other polyunsaturated fatty acids from the marine opisthobranch Scaphander lignarius, isolated using bioassay guided fractionation. Marine Drugs 10:2676–2690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chang KJL, Dunstan GA, Abell GCJ, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  CAS  Google Scholar 

  12. Chang KJL, Mansour MP, Dunstan GA, Blackburn SI, Koutoulis A, Nichols PD (2011) Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry 72:1460–1465

    Article  CAS  PubMed  Google Scholar 

  13. Rohner CA, Couturier LIE, Richardson AJ, Pierce SJ, Prebble CEM, Gibbons MJ, Nichols PD (2013) Diet of whale sharks Rhincodon typus inferred from stomach content and signature fatty acid analyses. Mar Ecol Prog Ser 493:219–235

    Article  CAS  Google Scholar 

  14. Simonetti MS, Blasi F, Bosi A, Maurizi A, Cossignani L, Damiani P (2008) Stereospecific analysis of triacylglycerol and phospholipid fractions of four freshwater fish species: Salmo trutta, Ictalurus punctatus, Ictalurus melas and Micropterus salmoides. Food Chem 110:199–206

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H (1991) Production of odd chain polyunsaturated fatty-acids by Mortierella fungi. J Amer Oil Chem Soc 68:254–258

    Article  CAS  Google Scholar 

  16. Shirasaka N, Yokochi T, Shimizu S (1995) Formation of a novel odd chain polyunsaturated fatty-acid, 5,8,11,14,17-cis-nonadecapentaenoic acid, by an EPA-producing aquatic fungus, Saprolegnia sp, 28YTF-1. Biosci Biotechnol Biochem 59:1963–1965

    Article  CAS  Google Scholar 

  17. Mottram HR (2005) Regiospecific analysis of triacylglycerols using high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. In: Byrdwell WC (ed) Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques. AOCS Press, Champaign, IL, pp 276–297

    Google Scholar 

  18. Lisa M, Holcapek M (2013) Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal Chem 85:1852–1859

    Article  CAS  PubMed  Google Scholar 

  19. Itabashi Y (2012) Chiral separation of glycerolipids by high-performance liquid chromatography. J Lipid Nutrition 21:27–34

    Article  CAS  Google Scholar 

  20. Pringsheim E.G. http://sagdb.uni-goettingen.de/culture_media/03%20Soil%20Water%20Media.pdf

  21. Christie WW (1989) Gas Chromatography and Lipids. Oily Press, Ayr, Scotland

    Google Scholar 

  22. Ziegler FE, Berger GD (1979) Mild method for the esterification of fatty-acids. Synth Commun 9:539–543

    Article  CAS  Google Scholar 

  23. Halldorsson A, Magnusson CD, Haraldsson GG (2003) Chemoenzymatic synthesis of structured triacylglycerols by highly regioselective acylation. Tetrahedron 59:9101–9109

    Article  CAS  Google Scholar 

  24. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  25. Dembitsky VM, Rezanka T, Bychek IA (1992) Fatty-acids and phospholipids from lichens of the order Lecanorales. Phytochemistry 31:851–853

    Article  Google Scholar 

  26. Dembitsky VM, Rezanka T, Rozentsvet OA (1993) Lipid-composition of 3 macrophytes from the Caspian Sea. Phytochemistry 33:1015–1019

    Article  CAS  Google Scholar 

  27. Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1991) Identification of fatty-acids from Cladonia lichens. Phytochemistry 30:4015–4018

    Article  Google Scholar 

  28. Rezanka T, Sigler K (2014) Separation of enantiomeric triacylglycerols by chiral-phase HPLC. Lipids 49:1251–1260

    Article  CAS  PubMed  Google Scholar 

  29. Momchilova S, Tsuji K, Itabashi Y, Nikolova-Damyanova B, Kuskis A (2004) Resolution of triacylglycerol positional isomers by reversed-phase high-performance liquid chromatography. J Sep Sci 27:1033–1036

    Article  CAS  PubMed  Google Scholar 

  30. Rezanka T, Lukavsky J, Sigler K, Nedbalova L, Vitova M (2015) Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus. Phytochemistry 110:37–45

    Article  CAS  PubMed  Google Scholar 

  31. Nagai T, Matsumoto Y, Jiang YY, Ishikawa K, Wakatabe T, Mizobe H, Yoshinaga K, Kojima K, Kuroda I, Saito T, Beppu F, Gotoh N (2013) Actual ratios of triacylglycerol positional isomers and enantiomers comprising saturated fatty acids and highly unsaturated fatty acids in fishes and marine mammals. J Oleo Sci 62:1009–1015

    Article  CAS  PubMed  Google Scholar 

  32. Stamatov SD, Stawinski J (2007) Regioselective and stereospecific acylation across oxirane- and silyloxy systems as a novel strategy to the synthesis of enantiomerically pure mono-, di- and triglycerides. Org Biomol Chem 5:3787–3800

    Article  CAS  PubMed  Google Scholar 

  33. Lisa M, Holcapek M, Bohac M (2009) Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry data. J Agr Food Chem 57:6888–6898

    Article  CAS  Google Scholar 

  34. Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by GACR projects P503/11/0215 and 14-00227S, and by Institutional Research Concept RVO61388971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 126 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Řezanka, T., Vítová, M., Nováková, A. et al. Separation and Identification of Odd Chain Triacylglycerols of the Protozoan Khawkinea quartana and the Mold Mortierella alpina Using LC–MS. Lipids 50, 811–820 (2015). https://doi.org/10.1007/s11745-015-4042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4042-8

Keywords

Navigation