Skip to main content
Log in

Circulating Lp(a):LDL Complexes Contain LDL Molecules Proportionate to Lp(a) Size and Bind to Galectin-1: A Possible Route for LDL Entry into Cells

  • Original Article
  • Published:
Lipids

Abstract

The molecular mechanism of vascular pathology mediated by circulating lipoprotein(a) [Lp(a)] remains unknown. We examined the role of two distinguishing features of Lp(a) viz non-covalent complex formation with a low density lipoprotein (LDL) and heavy glycosylation as determinants of binding of this lipoprotein and its LDL complex to cell-surface receptors. LDL isolated from the Lp(a):LDL complex, free LDL and oxidized LDL were equally efficient in forming a reconstituted complex with pure Lp(a). Complexed LDL in healthy individuals was equal in oxidation status to free LDL. The number of LDL molecules associated with each Lp(a) molecule (LDL index) in plasma samples increased steadily with Lp(a) size (correlation coefficient r = 0.834). Complex reconstituted from purified plasma Lp(a) and LDL maintained the same LDL index as plasma in accordance with Lp(a) size. Consequently, the percentage of complex-free Lp(a) in the plasma decreased sharply with Lp(a) size (r = −0.887). Although O-glycosylation measured in terms of lectin binding increased with Lp(a) size, the LDL index increased significantly faster than O-glycosylation among Lp(a) phenotypes of different plasma samples. Complexes with varying stoichiometry existed in the same plasma. Extra LDL complex molecules were not recognized by LDL receptors on human macrophages or rat cardiac fibroblasts indicating attachment to Lp(a) involved LDL receptor-binding sites. However, unlike free LDL complex LDL could attach through Lp(a) to immobilized form of galectin-1, a lectin ubiquitous on mammalian cells. Results suggest that phenotype-dependence of the physiological and pathological functions of Lp(a) may operate through differential LDL-carrier activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

JL1:

Lipid fraction of jacalin precipitate of plasma

JSL1:

Lipid layer of supernatant after jacalin precipitation of plasma

PBS:

20 mM potassium phosphate buffer with150 mM NaCl, pH 7.4

PBS-T:

PBS containing 0.05 % Tween 20

PEG-6000:

Polyethylene glycol-6000

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

TBE:

Tris Borate EDTA buffer (0.05 M Tris, 0.025 M boric acid, 0.003 M disodium salt of EDTA), pH 8.7

References

  1. Chiesa G, Hobbs HH, Koschinsky ML, Lawn RM, Maika SD, Hammer RE (1992) Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a). J Biol Chem 267:24369–24374

    PubMed  CAS  Google Scholar 

  2. Lawn RM, Boonmark NW, Schwartz K, Lindahl GE, Wade DP, Byrne CD, Fong KJ, Meer K, Patthy L (1995) The recurring evolution of lipoprotein(a). Insights from cloning of hedgehog apolipoprotein(a). J Biol Chem 270:24004–24009

    Article  PubMed  CAS  Google Scholar 

  3. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM (1987) cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330:132–137

    Article  PubMed  CAS  Google Scholar 

  4. Lackner C, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH (1991) Molecular basis of apolipoprotein (a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest 87:2153–2161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Marcovina SM, Zhang ZH, Gaur VP, Albers JJ (1993) Identification of 34 apolipoprotein(a) isoforms: differential expression of apolipoprotein(a) alleles between American blacks and whites. Biochem Biophys Res Commun 191:1192–1196

    Article  PubMed  CAS  Google Scholar 

  6. Momiyama Y, Ohmori R, Fayad ZA, Tanaka N, Kato R, Taniguchi H, Nagata M, Ohsuzu F (2012) Associations between serum lipoprotein(a) levels and the severity of coronary and aortic atherosclerosis. Atherosclerosis 222:241–244

    Article  PubMed  CAS  Google Scholar 

  7. Smolders B, Lemmens R, Thijs V (2007) Lipoprotein (a) and stroke: a meta-analysis of observational studies. Stroke 38:1959–1966

    Article  PubMed  CAS  Google Scholar 

  8. Solfrizzi V, Panza F, D’Introno A, Colacicco AM, Capurso C, Basile AM, Capurso A (2002) Lipoprotein(a), apolipoprotein E genotype, and risk of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 72:732–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Pepin JM, O’Neil JA, Hoff HF (1991) Quantification of apo[a] and apoB in human atherosclerotic lesions. J Lipid Res 32:317–327

    PubMed  CAS  Google Scholar 

  10. Trieu VN, Zioncheck TF, Lawn RM, McConathy WJ (1991) Interaction of apolipoprotein(a) with apolipoprotein B-containing lipoproteins. J Biol Chem 266:5480–5485

    PubMed  CAS  Google Scholar 

  11. Garner B, Merry AH, Royle L, Harvey DJ, Rudd PM, Thillet J (2001) Structural elucidation of the N- and O-glycans of human apolipoprotein(a): role of o-glycans in conferring protease resistance. J Biol Chem 276:22200–22208

    Article  PubMed  CAS  Google Scholar 

  12. Chellan B, Narayani J, Appukuttan PS (2007) Galectin-1, an endogenous lectin produced by arterial cells, binds lipoprotein(a) [Lp(a)] in situ: relevance to atherogenesis. Exp Mol Pathol 83:399–404

    Article  PubMed  CAS  Google Scholar 

  13. Heyderman E, Strudley K, Richardson TC (1989) Immunohistochemistry in pathology. In: Weir DM, Herzanberg LA, Blackwell C, Herzenberg LA (eds) Hand Book of Experimental Immunology. Blackwell, Oxford, pp 129.121–129.127

    Google Scholar 

  14. Anu P, Moly A, Jaisy M, Appukuttan PS (2011) High polymeric IgA content facilitates recognition of microbial polysaccharide-natural serum antibody immune complexes by immobilized human galectin-1. Immunol Lett 136:55–60

    Article  Google Scholar 

  15. Hudson L, Hay FC (1980) Practical immunology. Blackwell, Oxford, pp 11–13

    Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Anuradha S, Geetha M, Sabari SP, Appukuttan PS (2013) ApoB-independent enzyme immunoassay for lipoprotein(a) by capture on immobilized lectin (jacalin). J Immunoassay Immunochem 34:166–179

    Article  Google Scholar 

  18. Sureshkumar G, Appukuttan PS, Basu D (1982) Purification and characterization of an alpha-galactose binding lectin from jack fruit seed (Artocarpus integrifolia). J Biosci 4:257–261

    Article  Google Scholar 

  19. Sangeetha SR, Appukuttan PS (2005) IgA1 is the premier serum glycoprotein recognized by human galectin-1 since T antigen (Galbeta1– > 3GalNAc-) is far superior to non-repeating N-acetyl lactosamine as ligand. Int J Biol Macromol 35:269–276

    Article  PubMed  CAS  Google Scholar 

  20. Chellan B, Appukuttan PS, Jayakumari N (2006) Electroelution of lipoprotein(a) [Lp(a)] from native polyacrylamide gels: a new, simple method to purify Lp(a). J Biochem Biophys Methods 68:43–53

    Article  PubMed  CAS  Google Scholar 

  21. Hudson L, Hay FC (1980) Practical immunology. Blackwell, Oxford, pp 227–228

    Google Scholar 

  22. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Galle J, Mulsch A, Busse R, Bassenge E (1991) Effects of native and oxidized low density lipoproteins on formation and inactivation of endothelium-derived relaxing factor. Arterioscler and thromb: J Vasc Biol/Am Heart Assoc 11:198–203

    Article  CAS  Google Scholar 

  24. Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM (2001) A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res 42:1308–1317

    PubMed  CAS  Google Scholar 

  25. Panda SK, Kumar S, Tupperwar NC, Vaidya T, George A, Rath S, Bal V, Ravindran B (2012) Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog 8:e1002717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, Witztum JL, Berger PB (2005) Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 353:46–57

    Article  PubMed  CAS  Google Scholar 

  27. Yashiro A, O’Neil J, Hoff HF (1993) Insoluble complex formation of lipoprotein (a) with low density lipoprotein in the presence of calcium ions. J Biol Chem 268:4709–4715

    PubMed  CAS  Google Scholar 

  28. Mahley RW, Weisgraber KH, Melchior GW, Innerarity TL, Holcombe KS (1980) Inhibition of receptor-mediated clearance of lysine and arginine-modified lipoproteins from the plasma of rats and monkeys. Proc Natl Acad Sci USA 77:225–229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Armstrong VW, Walli AK, Seidel D (1985) Isolation, characterization, and uptake in human fibroblasts of an apo(a)-free lipoprotein obtained on reduction of lipoprotein(a). J Lipid Res 26:1314–1323

    PubMed  CAS  Google Scholar 

  30. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P (2001) Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res 89:1111–1121

    Article  PubMed  CAS  Google Scholar 

  31. Mehta KD, Chen WJ, Goldstein JL, Brown MS (1991) The low density lipoprotein receptor in Xenopus laevis. I. Five domains that resemble the human receptor. J Biol Chem 266:10406–10414

    PubMed  CAS  Google Scholar 

  32. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810

    PubMed  CAS  Google Scholar 

  33. Nielsen LB, Stender S, Jauhiainen M, Nordestgaard BG (1996) Preferential influx and decreased fractional loss of lipoprotein(a) in atherosclerotic compared with nonlesioned rabbit aorta. J Clin Invest 98:563–571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Danesh J, Collins R, Peto R (2000) Lipoprotein(a) and coronary heart disease: Meta-analysis of prospective studies. Circulation 102:1082–1085

    Article  PubMed  CAS  Google Scholar 

  35. Guerra R, Yu Z, Marcovina S, Peshock R, Cohen JC, Hobbs HH (2005) Lipoprotein(a) and apolipoprotein(a) isoforms: no association with coronary artery calcification in the Dallas heart study. Circulation 111:1471–1479

    Article  PubMed  CAS  Google Scholar 

  36. Kotani K, Sakane N (2012) Carotid intima-media thickness in asymptomatic subjects with low lipoprotein(a) levels. J Clin Med Res 4:130–134

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Geetha M, Sabarinath PS, Kalaivani V, Appukuttan PS (2013) Human plasma anti-α-galactoside antibody forms immune complex with autologous lipoprotein(a). Immunol Invest 42:324–340

    Article  Google Scholar 

  38. Geetha M, Kalaivani V, Sabarinath PS, Appukuttan PS (2014) Plasma anti-α-galactoside antibody binds to serine- and threonine-rich peptide sequence of apo(a) subunit in Lp(a). Glycoconj J. doi:10.1007/s10719-014-9521-2

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jaisy Mathai, Head, Department of Transfusion Medicine and Dr. Sivakumar, Scientist, Department of Cellular and Molecular Cardiology of this institute for provision of out-dated plasma samples and cultured (75 % confluent P3 passage) rat cardiac fibroblasts, respectively. V. Kalaivani received a fellowship from University Grants Commission (UGC), New Delhi, India.

Conflict of interest

None to be reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padinjaradath Sankunni Appukuttan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaivani, V., Appukuttan, P.S. Circulating Lp(a):LDL Complexes Contain LDL Molecules Proportionate to Lp(a) Size and Bind to Galectin-1: A Possible Route for LDL Entry into Cells. Lipids 49, 1101–1113 (2014). https://doi.org/10.1007/s11745-014-3941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3941-4

Keywords

Navigation