Skip to main content
Log in

Types of Oilseed and Adipose Tissue Influence the Composition and Relationships of Polyunsaturated Fatty Acid Biohydrogenation Products in Steers Fed a Grass Hay Diet

  • Original Article
  • Published:
Lipids

Abstract

The current study evaluated the composition and relationships of polyunsaturated fatty acid biohydrogenation products (PUFA-BHP) from the perirenal (PRF) and subcutaneous fat (SCF) of yearling steers fed a 70 % grass hay diet with concentrates containing either sunflower-seed (SS) or flaxseed (FS). Analysis of variance indicated several groups or families of structurally related FA, and individual FA within these were affected by a number of novel oilseed by fat depot interactions (P < 0.05). Feeding diets containing SS increased the proportions of non-conjugated 18:2 BHP (i.e., atypical dienes, AD) and conjugated linoleic acids (CLA) with the first double bond from carbon 7 to 9, trans-18:1 isomers with double bonds from carbon 6 to 12, and these PUFA-BHP had greater proportions in SCF compared to PRF (P < 0.05). Enrichment of conjugated linolenic acids, AD and CLA isomers with the first double bond in position 11 or 12, and t-18:1 isomers with double bonds from carbon 13 to 16 were achieved by feeding diets containing FS, with PRF having greater proportions than SCF (P < 0.05). Principal component analysis visually confirmed interaction effects on these groups/families of FA, and further confirmed or suggested a number of relationships between PUFA-BHP. Feeding SS or FS in a grass hay diet and exploiting adipose tissue differences, therefore, present unique opportunities to differentially enrich a number of PUFA-BHP which seem to have positive health potential in humans (i.e., t11-18:1, c9,t11-18:2 and c9,t11,c15-18:3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

ANOVA:

Analysis of variance

AD:

Atypical dienes

BCFA:

Branched-chin fatty acids

BHP:

Biohydrogenation products

c :

Cis

CLA:

Conjugated linoleic acids

CLNA:

Conjugated linolenic acids

DM:

Dry matter

FA:

Fatty acids

FAME:

Fatty acid methyl esters

GC:

Gas chromatography

FS:

Flaxseed

GH:

Grass hay

LA:

Linoleic acid

n-3:

Omega-3

n-6:

Omega-6

PRF:

Perirenal fat

PUFA:

Polyunsaturated fatty acids

PCA:

Principal component analysis

RC:

Red clover silage

SCF:

Subcutaneous fat

SS:

Sunflower-seed

SFA:

Saturated fatty acids

t :

Trans

References

  1. Phillips SM (2012) Nutrient-rich meat proteins in offsetting age-related muscle loss. Meat Sci 92(3):174–178

    Article  CAS  PubMed  Google Scholar 

  2. Enser M, Hallett K, Hewitt B, Fursey GAJ, Wood JD (1996) Fatty acid content and composition of English beef, lamb and pork at retail. Meat Sci 42(4):443–456

    Article  CAS  PubMed  Google Scholar 

  3. Salter AM (2013) Dietary fatty acids and cardiovascular disease. Animal 7(Supplements1):163–171

    Article  CAS  PubMed  Google Scholar 

  4. Dilzer A, Park Y (2012) Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci Nutr 52(6):488–513

    Article  CAS  PubMed  Google Scholar 

  5. Field CJ, Blewett HH, Proctor S, Vine D (2009) Human health benefits of vaccenic acid. Appl Physiol Nutr Metab 34(5):979–991

    Article  CAS  PubMed  Google Scholar 

  6. Scollan N, Hocquette J-F, Nuernberg K, Dannenberger D, Richardson I, Moloney A (2006) Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 74(1):17–33

    Article  CAS  PubMed  Google Scholar 

  7. Raes K, De Smet S, Demeyer D (2004) Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Animal Feed Sci Technol 113(1–4):199–221

    Article  CAS  Google Scholar 

  8. Schmid A, Collomb M, Sieber R, Bee G (2006) Conjugated linoleic acid in meat and meat products: a review. Meat Sci 73(1):29–41

    Article  CAS  PubMed  Google Scholar 

  9. Nassu RT, Dugan MER, He ML, McAllister TA, Aalhus JL, Aldai N, Kramer JKG (2011) The effects of feeding flaxseed to beef cows given forage based diets on fatty acids of longissimus thoracis muscle and backfat. Meat Sci 89(4):469–477

    Article  CAS  PubMed  Google Scholar 

  10. Mapiye C, Turner TD, Rolland DC, Basarab JA, Baron VS, McAllister TA, Block HC, Uttaro B, Aalhus JL, Dugan MER (2013) Adipose tissue and muscle fatty acid profiles of steers fed red clover silage with and without flaxseed. Livest Sci 151(1):11–20

    Article  Google Scholar 

  11. Dugan MER, Aldai N, Aalhus JL, Rolland DC, Kramer JKG (2011) Review: trans-forming beef to provide healthier fatty acid profiles. Can J Animal Sci 91(4):545–556

    Article  CAS  Google Scholar 

  12. He ML, McAllister TA, Kastelic JP, Mir PS, Aalhus JL, Dugan MER, Aldai N, McKinnon JJ (2012) Feeding flaxseed in grass hay and barley silage diets to beef cows increases alpha-linolenic acid and its biohydrogenation intermediates in subcutaneous fat. J Animal Sci 90(2):592–604

    Article  CAS  Google Scholar 

  13. Jiang T, Mueller CJ, Busboom JR, Nelson ML, O’Fallon J, Tschida G (2013) Fatty acid composition of adipose tissue and muscle from Jersey steers was affected by finishing diet and tissue location. Meat Sci 93(2):153–161

    Article  CAS  PubMed  Google Scholar 

  14. Mapiye C, Aalhus JL, Turner TD, Rolland DC, Basarab JA, Baron VS, McAllister TA, Block HC, Uttaro B, Lopez-Campos O, Proctor SD, Dugan MER (2013) Effects of feeding flaxseed or sunflower-seed in high-forage diets on beef production, quality and fatty acid composition. Meat Sci 95(1):98–109

    Article  CAS  PubMed  Google Scholar 

  15. Aldai N, Dugan MER, Rolland DC, Kramer JKG (2009) Survey of the fatty acid composition of Canadian beef: backfat and longissimus lumborum muscle. Can J Animal Sci 89(3):315–329

    Article  CAS  Google Scholar 

  16. Cruz-Hernandez C, Deng Z, Zhou J, Hill AR, Yurawecz MP, Delmonte P, Mossoba MM, Dugan MER, Kramer JKG (2004) Methods for analysis of conjugated linoleic acids and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. J AOAC Int 87(2):545–562

    CAS  PubMed  Google Scholar 

  17. Kramer JKG, Hernandez M, Cruz-Hernandez C, Kraft J, Dugan MER (2008) Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids 43(3):259–273

    Article  CAS  PubMed  Google Scholar 

  18. Gómez-Cortés P, Bach A, Luna P, Juárez M, de la Fuente MA (2009) Effects of extruded linseed supplementation on n-3 fatty acids and conjugated linoleic acid in milk and cheese from ewes. J Dairy Sci 92(9):4122–4134

    Article  PubMed  Google Scholar 

  19. SAS (2009) SAS user’s guide: statistics. SAS for Windows. Release 9.2. SAS Institute Inc, Cary

    Google Scholar 

  20. Shingfield KJ, Bonnet M, Scollan ND (2013) Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 7(Suppl 1):132–162

    Article  CAS  PubMed  Google Scholar 

  21. Lee YJ, Jenkins TC (2011) Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J Nutr 141(8):1445–1450

    Article  CAS  PubMed  Google Scholar 

  22. Destaillats F, Trottier JP, Galvez JMG, Angers P (2005) Analysis of α-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci 88(9):3231–3239

    Article  CAS  PubMed  Google Scholar 

  23. Jouany JP, Lassalas B, Doreau M, Glasser F (2007) Dynamic features of the rumen metabolism of linoleic acid, linolenic acid and linseed oil measured in vitro. Lipids 42(4):351–360

    Article  CAS  PubMed  Google Scholar 

  24. Kramer JKG, Sehat N, Dugan MER, Mossoba MM, Yurawecz MP, Roach JAG, Eulitz K, Aalhus JL, Schaefer AL, Ku Y (1998) Distributions of conjugated linoleic acid (CLA) isomers in tissue lipid classes of pigs fed a commercial CLA mixture determined by gas chromatography and silver ion-high-performance liquid chromatography. Lipids 33(6):549–558

    Article  CAS  PubMed  Google Scholar 

  25. Martínez Marín AL, Gómez-Cortés P, Gómez Castro AG, Juárez M, Pérez Alba LM, Pérez Hernández M, de la Fuente MA (2011) Animal performance and milk fatty acid profile of dairy goats fed diets with different unsaturated plant oils. J Dairy Sci 94(11):5359–5368

    Article  PubMed  Google Scholar 

  26. Hennessy AA, Ross RP, Devery R, Stanton C (2011) The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids 46(2):105–119

    Article  CAS  PubMed  Google Scholar 

  27. Van Nieuwenhove CP, Terán V, González SN (2012) Conjugated linoleic and linolenic acid production by bacteria: development of functional foods, probiotics. In: E Rigobelo (ed) ISBN: 978-953-51-0776-7, InTech, doi: 10.5772/50321. Available from. http://www.intechopen.com/books/probiotics/conjugated-linoleic-and-linolenic-acid-production-by-bacteria-development-of-functional-foods

  28. Hood RL, Thornton RF (1976) Site variation in the deposition of linoleic acid in adipose tissue of cattle given formaldehyde-treated sunflower seed. Aust J Agric Res 27(6):895–902

    Article  CAS  Google Scholar 

  29. Massart-Leën AM, Massart DL (1981) The use of clustering techniques in the elucidation or confirmation of metabolic pathways. Application to the branched-chain fatty acids present in the milk fat of lactating goats. Biochem J 196(2):611–618

    PubMed Central  PubMed  Google Scholar 

  30. Fievez V, Vlaeminck B, Dhanoa MS, Dewhurst RJ (2003) Use of principal component analysis to investigate the origin of heptadecenoic and conjugated linoleic acids in milk. J Dairy Sci 86(12):4047–4053

    Article  CAS  PubMed  Google Scholar 

  31. Slots T, Butler G, Leifert C, Kristensen T, Skibsted LH, Nielsen JH (2009) Potentials to differentiate milk composition by different feeding strategies. J Dairy Sci 92(5):2057–2066

    Article  CAS  PubMed  Google Scholar 

  32. Bessa RJB, Alves SP, Jerónimo E, Alfaia CM, Prates JAM, Santos-Silva J (2007) Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur J Lipid Sci Technol 109(8):868–878

    Article  CAS  Google Scholar 

  33. Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109(8):828–855

    Article  CAS  Google Scholar 

  34. Shen X, Dannenberger D, Nuernberg K, Nuernberg G, Zhao R (2011) Trans-18:1 and CLA isomers in rumen and duodenal digesta of bulls fed n-3 and n-6 pufa-based diets. Lipids 46(9):831–841

    Article  CAS  PubMed  Google Scholar 

  35. Hino T, Fukuda S (2006) Biohydrogenation of linoleic and linolenic acids, and production of their conjugated isomers by Butyrivibrio fibrisolvens. In: 4th Euro Fed Lipid Congress, Madrid, Spain, pp 551

  36. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) Board-Invited Review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Animal Sci 86(2):397–412

    Article  CAS  Google Scholar 

  37. Wallace RJ, McKain N, Shingfield KJ, Devillard E (2007) Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J Lipid Res 48(10):2247–2254

    Article  CAS  PubMed  Google Scholar 

  38. Pariza MW, Park Y, Cook ME (2000) Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med 223(1):8–13

    Article  CAS  PubMed  Google Scholar 

  39. Park Y (2009) Conjugated linoleic acid (CLA): Good or bad trans fat? J Food Compos Anal 22(Suppl.):S4–S12

    Article  CAS  Google Scholar 

  40. Benjamin S, Spener F (2009) Conjugated linoleic acids as functional food: an insight into their health benefits. Nutr Metab 6(1):1–13

    Article  Google Scholar 

  41. Sofi F, Buccioni A, Cesari F, Gori AM, Minieri S, Mannini L, Casini A, Gensini GF, Abbate R, Antongiovanni M (2010) Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutr Metab Cardiovasc Dis 20(2):117–124

    Article  CAS  PubMed  Google Scholar 

  42. Ip C, Singh M, Thompson HJ, Scimeca JA (1994) Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res 54(5):1212–1215

    CAS  PubMed  Google Scholar 

  43. Mitchell PL, Karakach TK, Currie DL, McLeod RS (2012) t-10, c-12 CLA dietary supplementation inhibits atherosclerotic lesion development despite adverse cardiovascular and hepatic metabolic marker profiles. PLoS One 7(12):e52634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43(6):553–587

    Article  CAS  PubMed  Google Scholar 

  45. Doreau M, Ferlay A (1994) Digestion and utilisation of fatty acids by ruminants. Animal Feed Sci Technol 45(3–4):379–396

    Article  CAS  Google Scholar 

  46. Jacobs AAA, van Baal J, Smits MA, Taweel HZH, Hendriks WH, van Vuuren AM, Dijkstra J (2011) Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows. J Dairy Sci 94(2):874–887

    Article  CAS  PubMed  Google Scholar 

  47. Chang JHP, Lunt DK, Smith SB (1992) Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J Nutr 122(11):2074–2080

    CAS  PubMed  Google Scholar 

  48. Loor JJ, Ueda K, Ferlay A, Chilliard Y, Doreau M (2005) Intestinal flow and digestibility of trans fatty acids and conjugated linoleic acids (CLA) in dairy cows fed a high-concentrate diet supplemented with fish oil, linseed oil, or sunflower oil. Animal Feed Sci Technol 119(3–4):203–225

    Article  CAS  Google Scholar 

  49. Jaudszus A, Jahreis G, Schlörmann W, Fischer J, Kramer R, Degen C, Rohrer C, Roth A, Gabriel H, Barz D, Gruen M (2012) Vaccenic acid-mediated reduction in cytokine production is independent of c9, t11-CLA in human peripheral blood mononuclear cells. Biochim Biophys Acta—Mol Cell Biol Lipids 1821(10):1316–1322

    Article  CAS  Google Scholar 

  50. Wang Y, Jacome-Sosa MM, Proctor SD (2012) The role of ruminant trans fat as a potential nutraceutical in the prevention of cardiovascular disease. Food Res Int 46(2):460–468

    Article  CAS  Google Scholar 

  51. Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL, Griinari JM (2002) Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 76(3):504–510

    CAS  PubMed  Google Scholar 

  52. Bauchart D, Roy A, Lorenz S, Chardigny JM, Ferlay A, Gruffat D, Sébédio JL, Chilliard Y, Durand D (2007) Butters varying in trans-18:1 and cis-9,trans-11 conjugated linoleic acid modify plasma lipoproteins in the hypercholesterolemic rabbit. Lipids 42(2):123–133

    Article  CAS  PubMed  Google Scholar 

  53. Roy A, Chardigny JM, Bauchart D, Ferlay D, Lorenz S, Durand D, Gruffat D, Faulconnier Y, Sébédio JL, Chilliard Y (2007) Butters rich either in trans-10-C18:1 or in trans-11-C18:1 plus cis-9, trans-11 CLA differentially affect plasma lipids and aortic fatty streak in experimental atherosclerosis in rabbits. Animal 1(3):467–476

    Article  CAS  PubMed  Google Scholar 

  54. Juarez M, Horcada A, Alcalde MJ, Aldai N, Polvillo O, Valera M, Molina A (2010) Short communication: fatty acid composition of lamb fat depots as an origin discriminator. Span J Agric Res 8(4):976–980

    Article  Google Scholar 

  55. Sobczuk-szul M, Nogalski Z, Wielgosz-groth Z, Mochol M, Rzemieniewski A, Pogorzelska-przybyłek P, Purwin C (2013) Fatty acid profile in four types of fat depots in Polish Holstein-Friesian and Limousine × Polish Holstein-Friesian bulls. Turkish J Vet Animal Sci. doi:10.3906/vet-1301-21

  56. Griinari JM, Bauman DE (1999) Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz MP, Mossoba M, Kramer JKG, Nelson G, Pariza MW (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign, pp 180–200

    Google Scholar 

Download references

Acknowledgments

Alberta Livestock and Meat Agency (ALMA) is acknowledged for funding this research. Drs C. Mapiye and T. D. Turner received NSERC Fellowships funded through ALMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. R. Dugan.

About this article

Cite this article

Mapiye, C., Aalhus, J.L., Turner, T.D. et al. Types of Oilseed and Adipose Tissue Influence the Composition and Relationships of Polyunsaturated Fatty Acid Biohydrogenation Products in Steers Fed a Grass Hay Diet. Lipids 49, 275–286 (2014). https://doi.org/10.1007/s11745-013-3876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3876-1

Keywords

Navigation