Skip to main content
Log in

Egg Consumption Modulates HDL Lipid Composition and Increases the Cholesterol-Accepting Capacity of Serum in Metabolic Syndrome

  • Original Article
  • Published:
Lipids

Abstract

We recently demonstrated that daily whole egg consumption during moderate carbohydrate restriction leads to greater increases in plasma HDL-cholesterol (HDL-C) and improvements in HDL profiles in metabolic syndrome (MetS) when compared to intake of a yolk-free egg substitute. We further investigated the effects of this intervention on HDL composition and function, hypothesizing that the phospholipid species present in egg yolk modulate HDL lipid composition to increase the cholesterol-accepting capacity of subject serum. Men and women classified with MetS were randomly assigned to consume either three whole eggs (EGG, n = 20) per day or the equivalent amount of egg substitute (SUB, n = 17) throughout a 12-week moderate carbohydrate-restricted (25–30 % of energy) diet. Relative to other HDL lipids, HDL-cholesteryl ester content increased in all subjects, with greater increases in the SUB group. Further, HDL-triacylglycerol content was reduced in EGG group subjects with normal baseline plasma HDL-C, resulting in increases in HDL-CE/TAG ratios in both groups. Phospholipid analysis by mass spectrometry revealed that HDL became enriched in phosphatidylethanolamine in the EGG group, and that EGG group HDL better reflected sphingomyelin species present in the whole egg product at week 12 compared to baseline. Further, macrophage cholesterol efflux to EGG subject serum increased from baseline to week 12, whereas no changes were observed in the SUB group. Together, these findings suggest that daily egg consumption promotes favorable shifts in HDL lipid composition and function beyond increasing plasma HDL-C in MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter A1

ABCG1:

ATP-binding cassette transporter G1

BCA:

Bicinchoninic acid

CAD:

Coronary artery disease

CE:

Cholesteryl ester

CerPCho:

Sphingomyelin

CETP:

Cholesteryl ester transfer protein

CVD:

Cardiovascular disease

DMPC:

Dimyristoylphosphatidylcholine

EGG:

Whole egg group

FC:

Free cholesterol

HDL-C:

Plasma HDL-cholesterol

HDL-PL:

HDL-phospholipids

LCAT:

Lecithin-cholesterol acyltransferase

LysoPtdCho:

Lysophosphatidylcholine

NCEP ATP III:

National Cholesterol Education Program Adult Treatment Panel III

MetS:

Metabolic syndrome

PL:

Phospholipid

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdIns:

Phosphatidylinositol

RCT:

Reverse cholesterol transport

SDS:

Sodium dodecyl sulfate

SR-BI:

Scavenger receptor class B I

SUB:

Egg yolk-free egg substitute group

TAG:

Triacylglycerol

References

  1. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822

    Article  PubMed  CAS  Google Scholar 

  2. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Suppl):S189–S194

    PubMed  Google Scholar 

  3. Asztalos BF, Tani M, Schaefer EJ (2011) Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol 22:176–185

    Article  PubMed  CAS  Google Scholar 

  4. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res 95:764–772

    Article  PubMed  CAS  Google Scholar 

  5. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127–135

    Article  PubMed  CAS  Google Scholar 

  6. Kontush A, Chapman MJ (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev 58:342–374

    Article  PubMed  CAS  Google Scholar 

  7. Tchoua U, Gillard BK, Pownall HJ (2010) HDL superphospholipidation enhances key steps in reverse cholesterol transport. Atherosclerosis 209:430–435

    Article  PubMed  CAS  Google Scholar 

  8. Fournier N, Paul JL, Atger V, Cogny A, Soni T, de la Llera-Moya M, Rothblat G, Moatti N (1997) HDL phospholipid content and composition as a major factor determining cholesterol efflux capacity from Fu5AH cells to human serum. Arterioscler Thromb Vasc Biol 17:2685–2691

    Article  PubMed  CAS  Google Scholar 

  9. Rosenson RS, Brewer HB Jr, Chapman MJ, Fazio S, Hussain MM, Kontush A, Krauss RM, Otvos JD, Remaley AT, Schaefer EJ (2011) HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 57:392–410

    Article  PubMed  CAS  Google Scholar 

  10. Dashti M, Kulik W, Hoek F, Veerman EC, Peppelenbosch MP, Rezaee F (2011) A phospholipidomic analysis of all defined human plasma lipoproteins. Sci Rep 1:139

    Article  PubMed  Google Scholar 

  11. Zhang W, Asztalos B, Roheim PS, Wong L (1998) Characterization of phospholipids in pre-alpha HDL: selective phospholipid efflux with apolipoprotein A-I. J Lipid Res 39:1601–1607

    PubMed  CAS  Google Scholar 

  12. Piperi C, Kalofoutis C, Papaevaggeliou D, Papapanagiotou A, Lekakis J, Kalofoutis A (2004) The significance of serum HDL phospholipid levels in angiographically defined coronary artery disease. Clin Biochem 37:377–381

    Article  PubMed  CAS  Google Scholar 

  13. Bovet P, Darioli R, Essinger A, Golay A, Sigwart U, Kappenberger L (1989) Phospholipids and other lipids in angiographically assessed coronary artery disease. Atherosclerosis 80:41–47

    Article  PubMed  CAS  Google Scholar 

  14. Fournier N, de la Llera Moya M, Burkey BF, Swaney JB, Paterniti J Jr, Moatti N, Atger V, Rothblat GH (1996) Role of HDL phospholipid in efflux of cell cholesterol to whole serum: studies with human apoA-I transgenic rats. J Lipid Res 37:1704–1711

    PubMed  CAS  Google Scholar 

  15. Mweva S, Paul JL, Cambillau M, Goudouneche D, Beaune P, Simon A, Fournier N (2006) Comparison of different cellular models measuring in vitro the whole human serum cholesterol efflux capacity. Eur J Clin Invest 36:552–559

    Article  PubMed  CAS  Google Scholar 

  16. Klimov AN, Konstantinov VO, Lipovetsky BM, Kuznetsov AS, Lozovsky VT, Trufanov VF, Plavinsky SL, Gundermann KJ, Schumacher R (1995) “Essential” phospholipids versus nicotinic acid in the treatment of patients with type IIb hyperlipoproteinemia and ischemic heart disease. Cardiovasc Drugs Ther 9:779–784

    Article  PubMed  CAS  Google Scholar 

  17. Bunea R, El Farrah K, Deutsch L (2004) Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern Med Rev 9:420–428

    PubMed  Google Scholar 

  18. Mutungi G, Ratliff J, Puglisi M, Torres-Gonzalez M, Vaishnav U, Leite JO, Quann E, Volek JS, Fernandez ML (2008) Dietary cholesterol from eggs increases plasma HDL cholesterol in overweight men consuming a carbohydrate-restricted diet. J Nutr 138:272–276

    PubMed  CAS  Google Scholar 

  19. Iwata T, Hoshi S, Takehisa F, Tsutsumi K, Furukawa Y, Kimura S (1992) The effect of dietary safflower phospholipid and soybean phospholipid on plasma and liver lipids in rats fed a hypercholesterolemic diet. J Nutr Sci Vitaminol (Tokyo) 38:471–479

    Article  CAS  Google Scholar 

  20. Wat E, Tandy S, Kapera E, Kamili A, Chung RW, Brown A, Rowney M, Cohn JS (2009) Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis 205:144–150

    Article  PubMed  CAS  Google Scholar 

  21. Kullenberg D, Taylor LA, Schneider M, Massing U (2012) Health effects of dietary phospholipids. Lipids Health Dis 11:3

    Article  PubMed  Google Scholar 

  22. Zierenberg O, Grundy SM (1982) Intestinal absorption of polyenephosphatidylcholine in man. J Lipid Res 23:1136–1142

    PubMed  CAS  Google Scholar 

  23. Weihrauch JL, Son Y-S (1983) The phospholipid content of foods. J Am Oil Chem Soc 60:1971–1978

    Article  CAS  Google Scholar 

  24. Cohn JS, Kamili A, Wat E, Chung RW, Tandy S (2010) Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2:116–127

    Article  PubMed  CAS  Google Scholar 

  25. Mutungi G, Waters D, Ratliff J, Puglisi M, Clark RM, Volek JS, Fernandez ML (2010) Eggs distinctly modulate plasma carotenoid and lipoprotein subclasses in adult men following a carbohydrate-restricted diet. J Nutr Biochem 21:261–267

    Article  PubMed  CAS  Google Scholar 

  26. Blesso CN, Andersen CJ, Barona J, Volek JS, Fernandez ML (2013) Whole egg consumption improves lipoprotein profiles and insulin sensitivity to a greater extent than yolk-free egg substitute in individuals with metabolic syndrome. Metabolism 62:400–410

    Article  PubMed  CAS  Google Scholar 

  27. Blesso CN, Andersen CJ, Bolling BW, Fernandez ML (2013) Egg intake improves carotenoid status by increasing plasma HDL cholesterol in adults with metabolic syndrome. Food Funct 31:213–221

    Article  Google Scholar 

  28. Hansel B, Giral P, Nobecourt E, Chantepie S, Bruckert E, Chapman MJ, Kontush A (2004) Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab 89:4963–4971

    Article  PubMed  CAS  Google Scholar 

  29. (2001) Executive Summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285:2486–2497

  30. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 24:e13–e18

    Article  PubMed  CAS  Google Scholar 

  31. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  32. Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X, Parks JS, Shah D, Jerome WG, Gerelus M, Zabalawi M, Thomas MJ (2012) Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J Lipid Res 53:1890–1909

    Article  PubMed  CAS  Google Scholar 

  33. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  34. Mayurasakorn K, Srisura W, Sitphahul P, Hongto PO (2008) High-density lipoprotein cholesterol changes after continuous egg consumption in healthy adults. J Med Assoc Thai 91:400–407

    PubMed  Google Scholar 

  35. Klein BE, Klein R, Lee KE (2002) Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam. Diabetes Care 25:1790–1794

    Article  PubMed  Google Scholar 

  36. Hong Y, Jin X, Mo J, Lin HM, Duan Y, Pu M, Wolbrette DL, Liao D (2007) Metabolic syndrome, its preeminent clusters, incident coronary heart disease and all—cause mortality-results of prospective analysis for the atherosclerosis risk in communities study. J Intern Med 262:113–122

    Article  PubMed  CAS  Google Scholar 

  37. Shuhei N, Soderlund S, Jauhiainen M, Taskinen MR (2010) Effect of HDL composition and particle size on the resistance of HDL to the oxidation. Lipids Health Dis 9:104

    Article  PubMed  Google Scholar 

  38. Park KH, Shin DG, Kim JR, Hong JH, Cho KH (2010) The functional and compositional properties of lipoproteins are altered in patients with metabolic syndrome with increased cholesteryl ester transfer protein activity. Int J Mol Med 25:129–136

    PubMed  CAS  Google Scholar 

  39. Parra ES, Urban A, Panzoldo NB, Nakamura RT, Oliveira R, de Faria EC (2011) A reduction of CETP activity, not an increase, is associated with modestly impaired postprandial lipemia and increased HDL-cholesterol in adult asymptomatic women. Lipids Health Dis 10:87

    Article  PubMed  CAS  Google Scholar 

  40. Lamarche B, Uffelman KD, Carpentier A, Cohn JS, Steiner G, Barrett PH, Lewis GF (1999) Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 103:1191–1199

    Article  PubMed  CAS  Google Scholar 

  41. Skeggs JW, Morton RE (2002) LDL and HDL enriched in triglyceride promote abnormal cholesterol transport. J Lipid Res 43:1264–1274

    PubMed  CAS  Google Scholar 

  42. Kinoshita M, Fujita M, Usui S, Maeda Y, Kudo M, Hirota D, Suda T, Taki M, Okazaki M, Teramoto T (2004) Scavenger receptor type BI potentiates reverse cholesterol transport system by removing cholesterol ester from HDL. Atherosclerosis 173:197–202

    Article  PubMed  CAS  Google Scholar 

  43. Arsenault BJ, Lemieux I, Despres JP, Gagnon P, Wareham NJ, Stroes ES, Kastelein JJ, Khaw KT, Boekholdt SM (2009) HDL particle size and the risk of coronary heart disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. Atherosclerosis 206:276–281

    Article  PubMed  CAS  Google Scholar 

  44. Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ, Kraemer WJ, Bibus DM, Fernandez ML, Feinman RD (2009) Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 44:297–309

    Article  PubMed  CAS  Google Scholar 

  45. Smirnov MD, Esmon CT (1994) Phosphatidylethanolamine incorporation into vesicles selectively enhances factor Va inactivation by activated protein C. J Biol Chem 269:816–819

    PubMed  CAS  Google Scholar 

  46. Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernandez JA (1999) High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest 103:219–227

    Article  PubMed  CAS  Google Scholar 

  47. Bradamante S, Barenghi L, Giudici GA, Vergani C (1992) Free radicals promote modifications in plasma high-density lipoprotein: nuclear magnetic resonance analysis. Free Radic Biol Med 12:193–203

    Article  PubMed  CAS  Google Scholar 

  48. Navab M, Hama S, Hough G, Fogelman AM (2003) Oral synthetic phospholipid (DMPC) raises high-density lipoprotein cholesterol levels, improves high-density lipoprotein function, and markedly reduces atherosclerosis in apolipoprotein E-null mice. Circulation 108:1735–1739

    Article  PubMed  CAS  Google Scholar 

  49. Wang H, Du J, Lu S, Yao Y, Hunter F, Black DD (2001) Regulation of intestinal apolipoprotein A-I synthesis by dietary phosphatidylcholine in newborn swine. Lipids 36:683–687

    Article  PubMed  CAS  Google Scholar 

  50. Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, Coburn BA, Bissada N, Staels B, Groen AK, Hussain MM, Parks JS, Kuipers F, Hayden MR (2006) Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest 116:1052–1062

    Article  PubMed  CAS  Google Scholar 

  51. Rachmilewitz D, Fainaru M (1979) Apolipoprotein A-I synthesis and secretion by cultured human intestinal mucosa. Metabolism 28:739–743

    Article  PubMed  CAS  Google Scholar 

  52. Xu M, Zhou H, Gu Q, Li C (2009) The expression of ATP-binding cassette transporters in hypertensive patients. Hypertens Res 32:455–461

    Article  PubMed  CAS  Google Scholar 

  53. Xu M, Zhou H, Wang J, Li C, Yu Y (2009) The expression of ATP-binding cassette transporter A1 in Chinese overweight and obese patients. Int J Obes (Lond) 33:851–856

    Article  CAS  Google Scholar 

  54. Nakanishi S, Vikstedt R, Soderlund S, Lee-Rueckert M, Hiukka A, Ehnholm C, Muilu M, Metso J, Naukkarinen J, Palotie L, Kovanen PT, Jauhiainen M, Taskinen MR (2009) Serum, but not monocyte macrophage foam cells derived from low HDL-C subjects, displays reduced cholesterol efflux capacity. J Lipid Res 50:183–192

    Article  PubMed  CAS  Google Scholar 

  55. Gantman A, Fuhrman B, Aviram M, Hayek T (2010) High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx. Biochem Biophys Res Commun 391:523–528

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C (2008) C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler Thromb Vasc Biol 28:519–526

    Article  PubMed  CAS  Google Scholar 

  57. Ervin RB (2009) Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Report:1–7

  58. Dullaart RP, Groen AK, Dallinga-Thie GM, de Vries R, Sluiter WJ, van Tol A (2008) Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol. Eur J Endocrinol 158:53–60

    Article  PubMed  CAS  Google Scholar 

  59. Alenezi MY, Marcil M, Blank D, Sherman M, Genest J Jr (2004) Is the decreased high-density lipoprotein cholesterol in the metabolic syndrome due to cellular lipid efflux defect? J Clin Endocrinol Metab 89:761–764

    Article  PubMed  CAS  Google Scholar 

  60. Duong M, Collins HL, Jin W, Zanotti I, Favari E, Rothblat GH (2006) Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler Thromb Vasc Biol 26:541–547

    Article  PubMed  CAS  Google Scholar 

  61. Jian B, de la Llera-Moya M, Ji Y, Wang N, Phillips MC, Swaney JB, Tall AR, Rothblat GH (1998) Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J Biol Chem 273:5599–5606

    Article  PubMed  CAS  Google Scholar 

  62. Aron-Wisnewsky J, Julia Z, Poitou C, Bouillot JL, Basdevant A, Chapman MJ, Clement K, Guerin M (2011) Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J Clin Endocrinol Metab 96:1151–1159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Egg Nutrition Center from funds received by MLF, and by the Agriculture and Food Research Initiative Competitive Grant No. 2012-67011-19914 from the USDA National Institute of Food and Agriculture to CJA. Mass spectrometric analyses were performed in the Mass Spectrometer Facility of CCCWF School of Medicine and supported in part by NCI Center Grant 5P30CA12197. The Finnigan TSQ Quantum XLS GC/MS/MS was purchased with funds from NIH Shared Instrumentation Grant 1S10RR027940MS to MJT.

Conflict of Interest

MLF received funds from the Egg Nutrition Center to perform the study. CJA, CNB, JL, JB, DS, and MJT declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luz Fernandez.

About this article

Cite this article

Andersen, C.J., Blesso, C.N., Lee, J. et al. Egg Consumption Modulates HDL Lipid Composition and Increases the Cholesterol-Accepting Capacity of Serum in Metabolic Syndrome. Lipids 48, 557–567 (2013). https://doi.org/10.1007/s11745-013-3780-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3780-8

Keywords

Navigation