Skip to main content
Log in

Membrane Cholesterol Affects Stimulus-Activity Coupling in Type 1, but not Type 2, CCK Receptors: Use of Cell Lines with Elevated Cholesterol

  • Original Article
  • Published:
Lipids

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The lipid microenvironment of membrane proteins can affect their structure, function, and regulation. We recently described differential effects of acute modification of membrane cholesterol on the function of type 1 and 2 cholecystokinin (CCK) receptors. We now explore the regulatory impact of chronic cholesterol modification on these receptors using novel receptor-bearing cell lines with elevated membrane cholesterol. Stable CCK1R and CCK2R expression was established in clonal lines of 25RA cells having gain-of-function in SCAP [sterol regulatory element binding protein (SREBP) cleavage-activating protein] and SRD15 cells having deficiencies in Insig-1 and Insig-2 enzymes affecting HMG CoA reductase and SREBP. Increased cholesterol in the plasma membrane of these cells was directly demonstrated, and receptor binding and signaling characteristics were shown to reflect predicted effects on receptor function. In both environments, both types of CCK receptors were internalized and recycled normally in response to agonist occupation. No differences in receptor distribution within the membrane were appreciated at the light microscopic level in these CHO-derived cell lines. Fluorescence anisotropy was studied for these receptors occupied by fluorescent agonist and antagonist, as well as when tagged with YFP. These studies demonstrated increased anisotropy of the agonist ligand occupying the active state of the CCK1R in a cholesterol-enriched environment, mimicking fluorescence of the uncoupled, inactive state of this receptor, while there was no effect of increasing cholesterol on fluorescence at the CCK2R. These cell lines should be quite useful for examining the functional characteristics of potential drugs that might be used in an abnormal lipid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CCK1R:

Type 1 cholecystokinin receptor

CCK2R:

Type 2 cholecystokinin receptor

CHO:

Chinese hamster ovary

DMEM:

Dulbecco’s modified Eagle’s medium

Fura-2AM:

Fura-2-acetoxymethyl ester

GPCR:

G protein-coupled receptor

KRH:

Krebs-Ringer’s-HEPES

LPDS:

Lipoprotein-deficient serum

MβCD:

Methyl-β-cyclodextrin

PFO:

Perfringolysin θ

SREBP:

Sterol regulatory element-binding protein

References

  1. Edidin M (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol 11:492–496

    Article  PubMed  CAS  Google Scholar 

  2. Barrantes FJ (2010) Cholesterol effects on nicotinic acetylcholine receptor: cellular aspects. Subcell Biochem 51:467–487

    Article  PubMed  CAS  Google Scholar 

  3. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  4. Pike LJ, Casey L (2002) Cholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking. Biochemistry 41:10315–10322

    Article  PubMed  CAS  Google Scholar 

  5. Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280:2176–2185

    Article  PubMed  CAS  Google Scholar 

  6. Potter RM, Harikumar KG, Wu SV, Miller LJ (2012) Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 53:137–148

    Article  PubMed  CAS  Google Scholar 

  7. Paragh G, Kovacs E, Seres I, Keresztes T, Balogh Z, Szabo J, Teichmann F, Foris G (1999) Altered signal pathway in granulocytes from patients with hypercholesterolemia. J Lipid Res 40:1728–1733

    PubMed  CAS  Google Scholar 

  8. Seres I, Foris G, Varga Z, Kosztaczky B, Kassai A, Balogh Z, Fulop P, Paragh G (2006) The association between angiotensin II-induced free radical generation and membrane fluidity in neutrophils of patients with metabolic syndrome. J Membr Biol 214:91–98

    Article  PubMed  CAS  Google Scholar 

  9. Chang TY, Limanek JS (1980) Regulation of cytosolic acetoacetyl coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and mevalonate kinase by low density lipoprotein and by 25-hydroxycholesterol in Chinese hamster ovary cells. J Biol Chem 255:7787–7795

    PubMed  CAS  Google Scholar 

  10. Lee PC, Sever N, Debose-Boyd RA (2005) Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2. J Biol Chem 280:25242–25249

    Article  PubMed  CAS  Google Scholar 

  11. Harikumar KG, Pinon DI, Wessels WS, Prendergast FG, Miller LJ (2002) Environment and mobility of a series of fluorescent reporters at the amino terminus of structurally related peptide agonists and antagonists bound to the cholecystokinin receptor. J Biol Chem 277:18552–18560

    Article  PubMed  CAS  Google Scholar 

  12. Cheng ZJ, Harikumar KG, Holicky EL, Miller LJ (2003) Heterodimerization of type A and B cholecystokinin receptors enhance signaling and promote cell growth. J Biol Chem 278:52972–52979

    Article  PubMed  CAS  Google Scholar 

  13. Amundson DM, Zhou M (1999) Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods 38:43–52

    Article  PubMed  CAS  Google Scholar 

  14. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  15. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  16. Harikumar KG, Pinon DI, Miller LJ (2006) Fluorescent indicators distributed throughout the pharmacophore of cholecystokinin provide insights into distinct modes of binding and activation of type A and B cholecystokinin receptors. J Biol Chem 281:27072–27080

    Article  PubMed  CAS  Google Scholar 

  17. Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    Article  PubMed  CAS  Google Scholar 

  18. Harikumar KG, Hosohata K, Pinon DI, Miller LJ (2006) Use of probes with fluorescence indicator distributed throughout the pharmacophore to examine the peptide agonist-binding environment of the family B G protein-coupled secretin receptor. J Biol Chem 281:2543–2550

    Article  PubMed  CAS  Google Scholar 

  19. Harikumar KG, Clain J, Pinon DI, Dong M, Miller LJ (2005) Distinct molecular mechanisms for agonist peptide binding to types A and B cholecystokinin receptors demonstrated using fluorescence spectroscopy. J Biol Chem 280:1044–1050

    Article  PubMed  CAS  Google Scholar 

  20. Roettger BF, Rentsch RU, Hadac EM, Hellen EH, Burghardt TP, Miller LJ (1995) Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell. J Cell Biol 130:579–590

    Article  PubMed  CAS  Google Scholar 

  21. Roettger BF, Rentsch RU, Pinon D, Holicky E, Hadac E, Larkin JM, Miller LJ (1995) Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol 128:1029–1041

    Article  PubMed  CAS  Google Scholar 

  22. Dufresne M, Seva C, Fourmy D (2006) Cholecystokinin and gastrin receptors. Physiol Rev 86:805–847

    Article  PubMed  CAS  Google Scholar 

  23. Miller LJ, Gao F (2008) Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther 119:83–95

    Article  PubMed  CAS  Google Scholar 

  24. Gimpl G, Fahrenholz F (2000) Human oxytocin receptors in cholesterol-rich vs. cholesterol-poor microdomains of the plasma membrane. Eur J Biochem/FEBS 267:2483–2497

    Article  CAS  Google Scholar 

  25. Levitt ES, Clark MJ, Jenkins PM, Martens JR, Traynor JR (2009) Differential effect of membrane cholesterol removal on mu- and delta-opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase. J Biol Chem 284:22108–22122

    Article  PubMed  CAS  Google Scholar 

  26. Niu SL, Mitchell DC, Litman BJ (2002) Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation. J Biol Chem 277:20139–20145

    Article  PubMed  CAS  Google Scholar 

  27. Pang L, Graziano M, Wang S (1999) Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38:12003–12011

    Article  PubMed  CAS  Google Scholar 

  28. Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

    Article  PubMed  CAS  Google Scholar 

  29. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905

    Article  PubMed  CAS  Google Scholar 

  30. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Article  PubMed  CAS  Google Scholar 

  32. Brown MS, Goldstein JL (1990) Atherosclerosis. Scavenging for receptors. Nature 343:508–509

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  34. Amaral J, Xiao ZL, Chen Q, Yu P, Biancani P, Behar J (2001) Gallbladder muscle dysfunction in patients with chronic acalculous disease. Gastroenterology 120:506–511

    Article  PubMed  CAS  Google Scholar 

  35. Chen Q, Amaral J, Oh S, Biancani P, Behar J (1997) Gallbladder relaxation in patients with pigment and cholesterol stones. Gastroenterology 113:930–937

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank A.M. Ball and M.L. Augustine for their excellent technical assistance, and O. Najam for his assistance in early studies with these cells. This work was supported by grants from the National Institutes of Health (DK32878) and Mayo Clinic-Kinney Career Development Award (KGH).

Conflict of interest

The authors did not have any conflict of interest relevant to the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence J. Miller.

About this article

Cite this article

Harikumar, K.G., Potter, R.M., Patil, A. et al. Membrane Cholesterol Affects Stimulus-Activity Coupling in Type 1, but not Type 2, CCK Receptors: Use of Cell Lines with Elevated Cholesterol. Lipids 48, 231–244 (2013). https://doi.org/10.1007/s11745-012-3744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3744-4

Keywords

Navigation