Skip to main content
Log in

Isoprenoids: Remarkable diversity of form and function

  • Review
  • Published:
Lipids

Abstract

The isoprenoid biosynthetic pathway is the source of a wide array of products. The pathway has been highly conserved throughout evolution, and isoprenoids are some of the most ancient biomolecules ever identified, playing key roles in many life forms. In this review we focus on C-10 mono-, C-15 sesqui-, and C-20 diterpenes. Evidence for interconversion between the pathway intermediates farnesyl pyrophosphate and geranylgeranly pyrophosphate and their respective metabolites is examined. The diverse functions of these molecules are discussed in detail, including their ability to regulate expression of the β-HMG-CoA reductase and Ras-related proteins. Additional topics include the mechanisms underlying the apoptotic effects of select isoprenoids, antiulcer activities, and the disposition and degradation of isoprenoids in the environment. Finally, the significance of pharmacological manipulation of the isoprenoid pathway and clinical correlations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CPT:

cholinephosphotransferase

DMAPP:

dimethylallyl pyrophosphate

DOXP:

deoxy-d-xylulose 5-phosphate

DXPS:

deoxyxylulose 5-phosphate synthase

FOH:

farnesol

FPP:

farnesyl pyrophosphate

FPPase:

farnesyl pyrophosphatase

FPTase:

farnesyl protein transferase

FXR:

farnesoid X receptor

GGA:

geranylgeranylacetone

GGOH:

geranylgeraniol

GGPP:

geranylgeranyl pyrophosphate

GGPTase:

geranylgeranyl protein transferase

GOH:

geraniol

GPP:

geranyl pyrophosphate

HIDS:

hyper-IgD and periodic fever syndrome

HMGR:

HMG-CoA reductase

IDS:

isoprenyl diphosphate synthases

IPP:

isopentenyl pyrophosphate

JH:

juvenile hormone

LXR:

liver X receptor

MA:

mevalonic aciduria

MK:

mevalonate kinase

PKC:

protein kinase C

PPAR:

peroxisome proliferator-activated receptor

RAR:

retinoic acid receptor

ROS:

reactive oxygen species

RXR:

retinoid X receptor

References

  1. Sacchettini, J.C., and Poulter, C.D. (1997) Creating Isoprenoid Diversity, Science 277, 1788–1789.

    Article  PubMed  CAS  Google Scholar 

  2. Summouns, R.E., Jahnke, L.L., Hope, J.M., and Logan, G.A. (1999) 2-Methylhopanoids as Biomarkers for Cyanobacterial Oxygenic Photosynthesis, Nature 400, 554–557.

    Article  CAS  Google Scholar 

  3. Ferguson, J.J., Durr, I.F., and Rudney, H. (1959) The Biosynthesis of Mevalonic Acid, Proc. Nat. Acad. Sci. USA 45, 499–504.

    Article  PubMed  CAS  Google Scholar 

  4. Tchen, T.T. (1958) Mevalonic Kinase: Purification and Properties, J. Biol. Chem. 233, 1100–1103.

    PubMed  CAS  Google Scholar 

  5. Tada, M., and Lynen, F. (1961) On the Biosynthesis of Terpenes. XIV. On the Determination of Phosphomevalonic Acid Kinase and Pyrophosphomevalonic Acid Decarboxylase in Cell Extracts, J. Biochem. 49, 758–764.

    PubMed  CAS  Google Scholar 

  6. Agranoff, B.W., Eggerer, H., Henning, U., and Lynen, F. (1960) Biosynthesis of Terpenes. VII. Isopentenyl Pyrophosphate Isomerase, J. Biol. Chem. 235, 326–332.

    PubMed  CAS  Google Scholar 

  7. Milstone, D.S., Vold, B.S., Glitz, D.G., and Shutt, N. (1978) Antibodies to N6-(Δ2-isopentenyl) Adenosine and Its Nucleotide: Interaction with Purified tRNAs and with Bases, Nucleosides and Nucleotides of the Isopentenyladenosine Family, Nucleic Acids Res. 5, 3439–3455.

    PubMed  CAS  Google Scholar 

  8. Taya, Y., Tanaka, Y., and Nishimura, S. (1978) 5′-AMP Is a Direct Precursor of Cytokinin in Dictyostelium discoideum, Nature 271, 545–547.

    Article  PubMed  CAS  Google Scholar 

  9. Poulter, C.D., and Rilling, H.C. (1978) The Prenyl Transfer Reaction: Enzymic and Mechanistic Studies on the 1′-4 Coupling Reaction in the Terpene Biosynthetic Pathway, Acc. Chem. Res. 11, 307–313.

    Article  CAS  Google Scholar 

  10. Croteau, R., and Purkett, P.T. (1989) Geranyl Pyrophosphate Synthase: Characterization of the Enzyme and Evidence That This Chain-Length-Specific Prenyltransferase Is Associated with Monoterpene Biosynthesis in Sage (Salvia officinalis), Arch. Biochem. Biophys. 271, 524–535.

    Article  PubMed  CAS  Google Scholar 

  11. Beytia, E., Qureshi, A.A., and Porter, J.W. (1973) Squalene Synthetase. 3. Mechanism of the Reaction, J. Biol. Chem. 248, 1856–1867.

    PubMed  CAS  Google Scholar 

  12. Koyama, T., Matsubara, M., and Ogura, K. (1985) Isoprenoid Enzyme Systems of Silkworm. II. Formation of the Juvenile Hormone Skeletons by Farnesyl Pyrophosphate Synthetase II, J. Biochem. 98 (Tokyo), 457–463.

    PubMed  CAS  Google Scholar 

  13. Kandutsch, A.A., Paulus, H., Levin, E., and Bloch, K. (1964) Purification of Geranylgeranyl Pyrophosphate Synthetase from Micrococcus lysodeikticus, J. Biol. Chem. 239, 2507–2515.

    PubMed  CAS  Google Scholar 

  14. Reiss, Y., Goldstein, J.L., Seabra, M.C., Casey, P.J., and Brown, M.S. (1990) Inhibition of Purified p21ras Farnesyl:Protein Transferase by Cys-AAX Tetrapeptides, Cell 62, 81–88.

    Article  PubMed  CAS  Google Scholar 

  15. Moomaw, J.F., and Casey, P.J. (1992) Mammalian Protein Geranylgeranyltransferase. Subunit Composition and Metal Requirements, J. Biol. Chem. 267, 17438–17443.

    PubMed  CAS  Google Scholar 

  16. Yokoyama, K., and Gelb, M.H. (1993) Purification of a Mammalian Protein Geranylgeranyltransferase. Formation and Catalytic Properties of an Enzyme-Geranylgeranyl Pyrophosphate Complex, J. Biol. Chem. 268, 4055–4060.

    PubMed  CAS  Google Scholar 

  17. Armstrong, S.A., Seabra, M.C., Sudhof, T.C., Goldstein, J.L., and Brown, M.S. (1993) cDNA Cloning and Expression of the Alpha and Beta Subunits of Rat Rab Geranylgeranyl Transferase, J. Biol. Chem. 268, 12221–12229.

    PubMed  CAS  Google Scholar 

  18. Wang, K.C., and Ohnuma, S. (2000) Isoprenyl Diphosphate Synthases, Biochim. Biophys. Acta 1529, 33–48.

    PubMed  CAS  Google Scholar 

  19. Teclebrhan, H., Olsson, J., Swiezewska, E., and Dallner, G. (1993) Biosynthesis of the Side Chain of Ubiquinone: trans-Prenyltransferase in Rat Liver Microsomes, J. Biol. Chem. 268, 23081–23086.

    PubMed  CAS  Google Scholar 

  20. Matsuoka, S., Sagami, H., Kurisaki, A., and Ogura, K. (1991) Variable Product Specificity of Microsomal Dehydrodolichyl Diphosphate Synthase from Rat Liver, J. Biol. Chem. 266, 3464–3468.

    PubMed  CAS  Google Scholar 

  21. Ibata, K., Mizuno, M., Takigawa, T., and Tanaka, Y. (1983) Long-Chain Betulaprenol-Type Polyprenols from the Leaves of Ginkgo biloba, Biochem. J. 213, 305–311.

    PubMed  CAS  Google Scholar 

  22. Fujisaki, S., Hara, H., Nishimura, Y., Horiuchi, K., and Nishino, T. (1990) Cloning and Nucleotide Sequence of the ispA Gene Responsible for Farnesyl Diphosphate Synthase Activity in Escherichia coli, J. Biochem. (Tokyo) 108, 995–1000.

    CAS  Google Scholar 

  23. Apfel, C.M., Takacs, B., Fountoulakis, M., Stieger, M., and Keck, W. (1999) Use of Genomics to Identify Bacterial Undecaprenyl Pyrophosphate Synthetase: Cloning, Expression, and Characterization of the Essential uppS Gene, J. Bacteriol. 181, 483–492.

    PubMed  CAS  Google Scholar 

  24. Ogura, K., Koyama, T., and Sagami, H. (1997) Polyprenyl Diphosphate Synthases, Subcell. Biochem. 28, 57–87.

    PubMed  CAS  Google Scholar 

  25. Kuntz, M., Romer, S., Suire, C., Hugueney, P., Weil, J.H., Schantz, R., and Camara, B. (1992) Identification of a cDNA for the Plastid-Located Geranylgeranyl Pyrophosphate Synthase from Capsicum annuum: Correlative Increase in Enzyme Activity and Transcript Level During Fruit Ripening, Plant J. 2, 25–34.

    PubMed  CAS  Google Scholar 

  26. Sprenger, G.A., Schorken, U., Wiegert, T., Grolle, S., de Graaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S., and Sahm, H. (1997) Identification of a Thiamin-Dependent Synthase in Escherichia coli Required for the Formation of the 1-Deoxy-d-xylulose 5-phosphate Precursor to Isoprenoids, Thiamin, and Pyridoxol, Proc. Nat. Acad. Sci. USA 94, 12857–12862.

    Article  PubMed  CAS  Google Scholar 

  27. Lange, B.M., Wildung, M.R., McCaskill, D., and Croteau, R. (1998) A Family of Transketolases That Directs Isoprenoid Biosynthesis via a Mevalonate-Independent Pathway, Proc. Nat. Acad. Sci. USA 95, 2100–2104.

    Article  PubMed  CAS  Google Scholar 

  28. Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., and Bacher, A. (1998) The Deoxyxylulose Phosphate Pathway of Terpenoid Biosynthesis in Plants and Microorganisms, Chem. Biol. 5, R221-R233.

    Article  PubMed  CAS  Google Scholar 

  29. Flesch, G., and Rohmer, M. (1988) Prokaryotic Hopanoids: The Biosynthesis of the Bacteriohopane Skeleton. Formation of Isoprenic Units from Two Distinct Acetate Pools and a Novel Type of Carbon/Carbon Linkage Between a Triterpene and d-Ribose, Eur. J. Biochem. 175, 405–411.

    Article  PubMed  CAS  Google Scholar 

  30. Lange, B.M., and Croteau, R. (1999) Isopentenyl Diphosphate Biosynthesis via a Mevalonate-Independent Pathway: Isopentenyl Monophosphate Kinase Catalyzes the Terminal Enzymatic Step, Proc. Nat. Acad. Sci. USA 96, 13714–13719.

    Article  PubMed  CAS  Google Scholar 

  31. Lichtenthaler, H.K., Rohmer, M., and Schwender, J. (1997) Two Independent Biochemical Pathways for Isopentenyl Diphosphate and Isoprenoid Biosynthesis in Higher Plants, Physiol. Plant. 101, 643–652.

    Article  CAS  Google Scholar 

  32. Lange, B.M., Rujan, T., Martin, W., and Croteau, R. (2000) Isoprenoid Biosynthesis: The Evolution of Two Ancient and Distinct Pathways Across Genomes, Proc. Nat. Acad. Sci. USA 97, 13172–13177.

    Article  PubMed  CAS  Google Scholar 

  33. Boucher, Y., and Doolittle, W.F. (2000) The Role of Lateral Gene Transfer in the Evolution of Isoprenoid Biosynthesis Pathways, Mol. Microbiol. 37, 703–716.

    Article  PubMed  CAS  Google Scholar 

  34. Flesch, G., and Rohmer, M. (1989) Prokaryotic Triterpenoids. A Novel Hopanoid from the Ethanol-Producing Bacterium Zymomonas mobilis, Biochem. J. 262, 673–675.

    PubMed  CAS  Google Scholar 

  35. Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993) Isoprenoid Biosynthesis in Bacteria: A Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate, Biochem. J. 295, 517–524.

    PubMed  CAS  Google Scholar 

  36. Putra, S.R., Disch, A., Bravo, J.M., and Rohmer, M. (1998) Distribution of Mevalonate and Glyceraldehyde 3-Phosphate/Pyruvate Routes for Isoprenoid Biosynthesis in Some Gram-Negative Bacteria and Mycobacteria, FEMS Microbiol. Lett. 164, 169–175.

    Article  PubMed  CAS  Google Scholar 

  37. Knöss, W., Reuter, B., and Zapp, J. (1997) Biosynthesis of the Labdane Diterpene Marrubiin in Marrubium vulgare via a Non-mevalonate Pathway, Biochem. J. 326, 449–454.

    PubMed  Google Scholar 

  38. Schwender, J., Seemann, M., Lichtenthaler, H.K., and Rohmer, M. (1996) Biosynthesis of Isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a Novel Pyruvate/Glyceraldehyde 3-Phosphate Non-mevalonate Pathway in the Green Alga Scenedesmus obliquus, Biochem. J. 316, 73–80.

    PubMed  CAS  Google Scholar 

  39. Disch, A., and Rohmer, M. (1998) On the Absence of the Glyceraldehyde 3-Phosphate/Pyruvate Pathway for Isoprenoid Biosynthesis in Fungi and Yeasts, FEMS Microbiol. Lett. 168, 201–208.

    Article  PubMed  CAS  Google Scholar 

  40. Mahmoud, S.S., and Croteau, R.B. (2002) Strategies for Transgenic Manipulation of Monoterpene Biosynthesis in Plants, Trends Plant Sci. 7, 366–373.

    Article  PubMed  CAS  Google Scholar 

  41. Porter, J.W., and Spurgeon, S.L. (1981) Biosynthesis of Isoprenoid Compounds, Vol. 1, John Wiley & Sons, New York.

    Google Scholar 

  42. Harrewijn, P., van Oosten, A.M., and Piron, P.G.M. (2001) Natural Terpenoids as Messengers: A Multidisciplinary Study of Their Production, Biological Functions and Practical Applications, pp. 1–9, Kluwer Academic, Dordrecht.

    Google Scholar 

  43. Crowell, P.L. (1999) Prevention and Therapy of Cancer by Dietary Monoterpenes, J. Nutr. 129, 775S-778S.

    PubMed  CAS  Google Scholar 

  44. Gould, M.N., Moore, C.J., Zhang, R., Wang, B., Kennan, W.S., and Haag, J.D. (1994) Limonene Chemoprevention of Mammary Carcinoma Induction Following Direct in situ Transfer of v-Ha-ras, Cancer Res. 54, 3540–3543.

    PubMed  CAS  Google Scholar 

  45. Elegbede, J.A., Elson, C.E., Tanner, M.A., Qureshi, A., and Gould, M.N. (1986) Regression of Rat Primary Mammary Tumors Following Dietary d-Limonene, J. Natl. Cancer Inst. 76, 323–325.

    PubMed  CAS  Google Scholar 

  46. Haag, J.D., and Gould, M.N. (1994) Mammary Carcinoma Regression Induced by Perillyl Alcohol, a Hydroxylated Analog of Limonene, Cancer Chemother. Pharmacol. 34, 477–483.

    PubMed  CAS  Google Scholar 

  47. Stark, M.J., Burke, Y.D., McKinzie, J.H., Ayoubi, A.S., and Crowell, P.L. (1995) Chemotherapy of Pancreatic Cancer with the Monoterpene Perillyl Alcohol, Cancer Lett. 96, 15–21.

    Article  PubMed  CAS  Google Scholar 

  48. Elegbede, J.A., Flores, R., and Wang, R.C. (2003) Perillyl Alcohol and Perillaldehyde Induced Cell Cycle Arrest and Cell Death in Bro To and A549 Cells Cultured in vitro, Life Sci. 73, 2831–2840.

    Article  PubMed  CAS  Google Scholar 

  49. Ahn, K.J., Lee, C.K., Choi, E.K., Griffin, R., Song, C.W., and Park, H.J. (2003) Cytotoxicity of Perillyl Alcohol Against Cancer Cells Is Potentiated by Hyperthermia, Int. J. Radiat. Oncol. Biol. Phys. 57, 813–819.

    Article  PubMed  CAS  Google Scholar 

  50. Unlu, S., Mason, C.D., Schachter, M., and Hughes, A.D. (2000) Perillyl Alcohol, an Inhibitor of Geranylgeranyl Transferase, Induces Apoptosis of Immortalized Human Vascular Smooth Muscle Cells in vitro, J. Cardiovasc. Pharmacol. 35, 341–344.

    Article  PubMed  CAS  Google Scholar 

  51. Sahin, M.B., Perman, S.M., Jenkins, G., and Clark, S.S. (1999) Perillyl Alcohol Selectively Induces G0/G1 Arrest and Apoptosis in Bcr/Abl-Transformed Myeloid Cell Lines, Leukemia. 13, 1581–1591.

    Article  PubMed  CAS  Google Scholar 

  52. Ripple, G.H., Gould, M.N., Stewart, J.A., Tutsch, K.D., Arzoomanian, R.Z., Alberti, D., Feierabend, C., Pomplun, M., Wilding, G., and Bailey, H.H. (1998) Phase I Clinical Trial of Perillyl Alcohol Administered Daily, Clin. Cancer Res. 4, 1159–1164.

    PubMed  CAS  Google Scholar 

  53. Vigushin, D.M., Poon, G.K., Boddy, A., English, J., Halbert, G.W., Pagonis, C., Jarman, M., and Coombes, R.C. (1998) Phase I and Pharmacokinetic Study of d-Limonene in Patients with Advanced Cancer. Cancer Research Campaign Phase I/II Clinical Trials Committee, Cancer Chemother. Pharmacol. 42, 111–117.

    Article  PubMed  CAS  Google Scholar 

  54. Hudes, G.R., Szarka, C.E., Adams, A., Ranganathan, S., McCauley, R.A., Weiner, L.M., Langer, C.J., Litwin, S., Yeslow, G., Halberr, T., et al. (2000) Phase I Pharmacokinetic Trial of Perillyl Alcohol (NSC 641066) in Patients with Refractory Solid Malignancies, Clin. Cancer Res. 6, 3071–3080.

    PubMed  CAS  Google Scholar 

  55. Ripple, G.H., Gould, M.N., Arzoomanian, R.Z., Alberti, D., Feierabend, C., Simon, K., Binger, K., Tutsch, K.D., Pomplun, M., Wahamaki, A., et al. (2000) Phase I Clinical and Pharmacokinetic Study of Perillyl Alcohol Administered Four Times a Day, Clin. Cancer Res. 6, 390–396.

    PubMed  CAS  Google Scholar 

  56. Murren, J.R., Pizzorno, G., DiStasio, S.A., McKeon, A., Peccerillo, K., Gollerkari, A., McMurray, W., Burtness, B.A., Rutherford, T., Li, X., et al. (2002) Phase I Study of Perillyl Alcohol in Patients with Refractory Malignancies, Cancer Biol. Ther. 1, 130–135.

    PubMed  CAS  Google Scholar 

  57. Bailey, H.H., Wilding, G., Tutsch, K.D., Arzoomanian, R.Z., Alberti, D., Feierabend, K.S., Marnocha, R., Holstein, S.A., Stewart, J., Lewis, K.A., and Hohl, R.J. (2004) A Phase I Trial of Perillyl Alcohol Administered 4 Times Daily for 14 Days out of 28 Days, Cancer Chemother. Pharmacol., in press.

  58. Crowell, P.L., Chang, R.R., Ren, Z.B., Elson, C.E., and Gould, M.N. (1991) Selective Inhibition of Isoprenylation of 21–26 kDa Proteins by the Anticarcinogen d-Limonene and Its Metabolites, J. Biol. Chem. 266, 17679–17685.

    PubMed  CAS  Google Scholar 

  59. Hohl, R.J., and Lewis, K. (1995) Differential Effects of Monoterpenes and Lovastatin on RAS Processing, J. Biol. Chem. 270, 17508–17512.

    Article  PubMed  CAS  Google Scholar 

  60. Holstein, S.A., and Hohl, R.J. (2003) Monoterpene Regulation of Ras and Ras-Related Protein Expression, J. Lipid Res. 44, 1209–1215.

    Article  PubMed  CAS  Google Scholar 

  61. Goodwin, T.E., Rasmussen, E.L., Guinn, A.C., McKelvey, S.S., Gunawardena, R., Riddle, S.W., and Riddle, H.S. (1999) African Elephant Sesquiterpenes, J. Nat. Prod. 62, 1570–1572.

    Article  PubMed  CAS  Google Scholar 

  62. Schulz, S., Kruckert, K., and Weldon, P.J. (2003) New Terpene Hydrocarbons from the Alligatoridae (Crocodylia, Reptilia), J. Nat. Prod. 66, 34–38.

    Article  PubMed  CAS  Google Scholar 

  63. Novotny, M., Harvey, S., and Jemiolo, B. (1990) Chemistry of Male Dominance in the House Mouse, Mus domesticus, Experientia 46, 109–113.

    Article  PubMed  CAS  Google Scholar 

  64. McBrien, H.L., Millar, J.G., Rice, R.E., McElfresh, J.S., Cullen, E., and Zalom, F.G. (2002) Sex Attractant Pheromone of the Red-Shouldered Stink Bug Thyanta pallidovirens: A Pheromone Blend with Multiple Redundant Components, J. Chem. Ecol. 28, 1797–1818.

    Article  PubMed  CAS  Google Scholar 

  65. Tesh, R.B., Guzman, H., and Wilson, M.L. (1992) Trans-Beta-Farnesene as a Feeding Stimulant for the Sand Fly Lutzomyia longipalpis (Diptera: Psychodidae), J. Med. Entomol. 29, 226–231.

    PubMed  CAS  Google Scholar 

  66. Quintana, A., Reinhard, J., Faure, R., Uva, P., Bagnères, A.G., Massiot, G., and Clément, J.L. (2003) Interspecific Variation in Terpenoid Composition of Defensive Secretions of European Reticulitermes Termites, J. Chem. Ecol., 29, 639–652.

    Article  PubMed  CAS  Google Scholar 

  67. Rowan, D.D., Hunt, M.B., Fielder, S., Norris, J., and Sherburn, M.S. (2001) Conjugated Triene Oxidation Products of α-Farnesene Induce Symptoms of Superficial Scald on Stored Apples, J. Agric. Food. Chem. 49, 2780–2787.

    PubMed  CAS  Google Scholar 

  68. Kuriyama, T., Schmidt, T.J., Okuyama, E., and Ozoe, Y. (2002) Structure-Activity Relationships of seco-Prezizaane Terpenoids in γ-Aminobutyric Acid Receptors of Houseflies and Rats, Bioorg. Med. Chem. 10, 1873–1881.

    Article  PubMed  CAS  Google Scholar 

  69. Castro, V., Murillo, R., Klaas, C.A., Meunier, C., Mora, G., Pahl, H.L., and Merfort, I. (2000) Inhibition of the Transcription Factor NF-κB by Sesquiterpene Lactones from Podachaenium eminens, Planta Med. 66, 591–595.

    Article  PubMed  CAS  Google Scholar 

  70. Duan, H., Takaishi, Y., Momota, H., Ohmoto, Y., Taki, T., Jia, Y., and Li, D. (2001) Immunosuppressive Sesquiterpene Alkaloids from Tripterygium wilfordii, J. Nat. Prod. 64, 582–587.

    Article  PubMed  CAS  Google Scholar 

  71. Appendino, G., Spagliardi, P., Cravotto, G., Pocock, V., and Milligan, S. (2002) Daucane Phytoestrogens: A Structure-Activity Study, J. Nat. Prod. 65, 1612–1615.

    Article  PubMed  CAS  Google Scholar 

  72. Chang, F.R., Hayashi, K., Chen, I.H., Liaw, C.C., Bastow, K.F., Nakanishi, Y., Nozaki, H., Cragg, G.M., Wu, Y.C., and Lee, K.H. (2003) Antitumor Agents. 228. Five New Agarofurans, Reissantins A-E, and Cytotoxic Principles from Reissantia buchananii, J. Nat. Prod. 66, 1416–1420.

    PubMed  CAS  Google Scholar 

  73. Jeong, S.J., Itokawa, T., Shibuya, M., Kuwano, M., Ono, M., Higuchi, R., and Miyamoto, T. (2002) Costunolide, a Sesquiterpene Lactone from Saussurea lappa, Inhibits the VEGFR KDR/Flk-1 Signaling Pathway, Cancer Lett. 187, 129–133.

    Article  PubMed  CAS  Google Scholar 

  74. Duan, H., Takaishi, Y., Imakura, Y., Jia, Y., Li, D., Cosentino, L.M., and Lee, K.H. (2000) Sequiterpene Alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii: A New Class of Potent Anti-HIV Agents, J. Nat. Prod. 63, 357–361.

    Article  PubMed  CAS  Google Scholar 

  75. Christophe, J., and Popják, G. (1961) Studies on the Biosynthesis of Cholesterol: XIV. The Origin of Prenoic Acids from Allyl Pyrophosphates in Liver Enzyme Systems, J. Lipid Res. 2, 244–257.

    Google Scholar 

  76. Bansal, V.S., and Vaidya, S. (1994) Characterization of Two Distinct Allyl Pyrophosphatase Activities from Rat Liver Microsomes, Arch. Biochem. Biophys. 315, 393–399.

    Article  PubMed  CAS  Google Scholar 

  77. Meigs, T.E., and Simoni, R.D. (1997) Farnesol as a Regulator of HMG-CoA Reductase Degradation: Characterization and Role of Farnesyl Pyrophosphatase, Arch. Biochem. Biophys. 345, 1–9.

    Article  PubMed  CAS  Google Scholar 

  78. Huang, Z., and Poulter, C.D. (1989) Stereochemical Studies of Botryococcene Biosynthesis: Analogies Between 1′-1 and 1′-3 Condensations in the Isoprenoid Pathway, J. Am. Chem. Soc. 111, 2713–2715.

    Article  CAS  Google Scholar 

  79. Crick, D.C., Andres, D.A., and Waechter, C.J. (1995) Farnesol Is Utilized for Protein Isoprenylation and the Biosynthesis of Cholesterol in Mammalian Cells, Biochem. Biophys. Res. Commun. 211, 590–599.

    Article  PubMed  CAS  Google Scholar 

  80. Fliesler, S.J., and Keller, R.K. (1995) Metabolism of [3H]Farnesol to Cholesterol and Cholesterogenic Intermediates in the Living Rat Eye, Biochem. Biophys. Res. Commun. 210, 695–702.

    Article  PubMed  CAS  Google Scholar 

  81. Westfall, D., Aboushadi, N., Shackelford, J.E., and Krisans, S.K. (1997) Metabolism of Farnesol: Phosphorylation of Farnesol by Rat Liver Microsomal and Peroxisomal Fractions, Biochem. Biophys. Res. Commun. 210, 562–568.

    Article  Google Scholar 

  82. Tachibana, A., Tanaka, T., Taniguchi, M., and Oi, S. (1996) Evidence for Farnesol-Mediated Isoprenoid Synthesis Regulation in a Halophilic Archaeon, Haloferax volcanii, FEBS Lett. 379, 43–46.

    Article  PubMed  CAS  Google Scholar 

  83. Bentinger, M., Grunler, J., Peterson, E., Swiezewska, E., and Dallner, G. (1998) Phosphorylation of Farnesol in Rat Liver Microsomes: Properties of Farnesol Kinase and Farnesyl Phosphate Kinase, Arch. Biochem. Biophys. 353, 191–198.

    Article  PubMed  CAS  Google Scholar 

  84. Thai, L., Rush, J.S., Maul, J.E., Devarenne, T., Rodgers, D.L., Chappell, J., and Waechter, C.J. (1999) Farnesol Is Utilized for Isoprenoid Biosynthesis in Plant Cells via Farnesyl Pyrophosphate Formed by Successive Monophosphorylation Reactions, Proc. Natl. Acad. Sci. USA 96, 13080–13085.

    Article  PubMed  CAS  Google Scholar 

  85. Wagner, P.D., and Wu, N.D. (2000) Phosphorylation of Geranyl and Farnesyl Pyrophosphates by Nm23 Proteins/Nucleoside Diphosphate Kinases, J. Biol. Chem. 275, 35570–35576.

    Article  PubMed  CAS  Google Scholar 

  86. Gonzalez-Pacanowska, D., Arison, B., Havel, C.M., and Watson, J.A. (1988) Isopentenoid Synthesis in Isolated Embryonic Drosophila Cells. Farnesol Catabolism and Omega-Oxidation, J. Biol. Chem. 263, 1301–1306.

    PubMed  CAS  Google Scholar 

  87. Fliesler, S.J., and Schroepfer, G.J., Jr. (1983) Metabolism of Mevalonic Acid in Cell-Free Homogenates of Bovine Retinas. Formation of Novel Isoprenoid Acids, J. Biol. Chem. 258, 15062–15070.

    PubMed  CAS  Google Scholar 

  88. Keung, W.M. (1991) Human Liver Alcohol Dehydrogenases Catalyze the Oxidation of the Intermediary Alcohols of the Shunt Pathway of Mevalonate Metabolism, Biochem. Biophys. Res. Commun. 174, 701–707.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang, L., Tschantz, W.R., and Casey, P.J. (1997) Isolation and Characterization of a Prenylcysteine Lyase from Bovine Brain, J. Biol. Chem. 272, 23354–23359.

    Article  PubMed  CAS  Google Scholar 

  90. Bostedor, R.G., Karkas, J.D., Arison, B.H., Bansal, V.S., Vaidya, S., Germershausen, J.I., Kurtz, M.M., and Bergstrom, J.D. (1997) Farnesol-Derived Dicarboxylic Acids in the Urine of Animals Treated with Zaragozic Acid A or with Farnesol, J. Biol. Chem. 272, 9197–9203.

    Article  PubMed  CAS  Google Scholar 

  91. Vaidya, S., Bostedor, R., Kurtz, M.M., Bergstrom, J.D., and Bansal, V.S. (1998) Massive Production of Farnesol-Derived Dicarboxylic Acids in Mice Treated with the Squalene Synthase Inhibitor Zaragozic Acid A, Arch. Biochem. Biophys. 355, 84–92.

    Article  PubMed  CAS  Google Scholar 

  92. Baker, F.C., Mauchamp, B., Tsai, L.W., and Schooley, D.A. (1983) Farnesol and Farnesal Dehydrogenase(s) in Corpora Allata of the Tobacco Hornworm Moth, Manduca sexta, J. Lipid Res. 24, 1586–1594.

    PubMed  CAS  Google Scholar 

  93. Keller, R.K., Zhao, Z., Chambers, C., and Ness, G.C. (1996) Farnesol Is Not the Nonsterol Regulator Mediating Degradation of HMG-CoA Reductase in Rat Liver, Arch. Biochem. Biophys. 328, 324–330.

    Article  PubMed  CAS  Google Scholar 

  94. Roullet, J.B., Spaetgens, R.L., Burlingame, T., Feng, Z.P., and Zamponi, G.W. (1999) Modulation of Neuronal Voltage-Gated Calcium Channels by Farnesol, J. Biol. Chem. 274, 25439–25446.

    Article  PubMed  CAS  Google Scholar 

  95. Saisho, Y., Morimoto, A., and Umeda, T. (1997) Determination of Farnesyl Pyrophosphate in Dog and Human Plasma by High-Performance Liquid Chromatography with Fluorescence Detection, Anal. Biochem. 252, 89–95.

    Article  PubMed  CAS  Google Scholar 

  96. Bruenger, E., and Rilling, H.C. (1988) Determination of Isopentenyl Diphosphate and Farnesyl Diphosphate in Tissue Samples with a Comment on Secondary Regulation of Polyisoprenoid Biosynthesis, Anal. Biochem. 173, 321–327.

    Article  PubMed  CAS  Google Scholar 

  97. Raner, G.M., Muir, A.Q., Lowry, C.W., and Davis, B.A. (2002) Farnesol as an Inhibitor and Substrate for Rabbit Liver Microsomal P450 Enzymes, Biochem. Biophys. Res. Commun. 293, 1–6.

    Article  PubMed  CAS  Google Scholar 

  98. Feyereisen, R., Pratt, G.E., and Hamnett, A.F. (1981) Enzymic Synthesis of Juvenile Hormone in Locust Corpora Allata: Evidence for a Microsomal Cytochrome P-450 Linked Methyl Farnesoate Epoxidase, Eur. J. Biochem. 118, 231–238.

    Article  PubMed  CAS  Google Scholar 

  99. Andersen, J.F., Walding, J.K., Evans, P.H., Bowers, W.S., and Feyereisen, R. (1997) Substrate Specificity for the Epoxidation of Terpenoids and Active Site Topology of House Fly Cytochrome P450 6A1, Chem. Res. Toxicol. 10, 156–164.

    Article  PubMed  CAS  Google Scholar 

  100. Sutherland, T.D., Unnithan, G.C., Andersen, J.F., Evans, P.H., Murataliev, M.B., Szabo, L.Z., Mash, E.A., Bowers, W.S., and Feyereisen, R. (1998) A Cytochrome P450 Terpenoid Hydroxylase Linked to the Suppression of Insect Juvenile Hormone Synthesis, Proc. Nat. Acad. Sci. USA 95, 12884–12889.

    Article  PubMed  CAS  Google Scholar 

  101. Bucher, N.L.R., McGarrahan, K., Gould, E., and Loud, A.V. (1959) Cholesterol Biosynthesis in Preparations of Liver from Normal, Fasting, X-Irradiated Cholesterol-Fed, Triton, or Δ4-Cholesten-3-one- Treated Rats, J. Biol. Chem. 234, 262–267.

    PubMed  CAS  Google Scholar 

  102. Siperstein, M.D., and Fagan, V.M. (1966) Feedback Control of Mevalonate Synthesis by Dietary Cholesterol, J. Biol. Chem. 241, 602–609.

    PubMed  CAS  Google Scholar 

  103. Brown, M.S., Faust, J.R., and Goldstein, J.L. (1978) Induction of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Activity in Human Fibroblasts Incubated with Compactin (ML-236B), a Competitive Inhibitor of the Reductase, J. Biol. Chem. 253, 1121–1128.

    PubMed  CAS  Google Scholar 

  104. Sakakura, Y., Shimano, H., Sone, H., Takahashi, A., Inoue, N., Toyoshima, H., Suzuki, S., Yamada, N., and Inoue, K. (2001) Sterol Regulatory Element-Binding Proteins Induce an Entire Pathway of Cholesterol Synthesis, Biochem. Biophys. Res. Commun. 286, 176–183.

    Article  PubMed  CAS  Google Scholar 

  105. Panini, S.R., Delate, T.A., and Sinensky, M. (1992) Post-transcriptional Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase by 24(S),25-Oxidolanosterol, J. Biol. Chem. 267, 12647–12654.

    PubMed  CAS  Google Scholar 

  106. Dawson, P.A., Metherall, J.E., Ridgway, N.D., Brown, M.S., and Goldstein, J.L. (1991) Genetic Distinction Between Sterol-Mediated Transcriptional and Posttranscriptional Control of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase, J. Biol. Chem. 266, 9128–9134.

    PubMed  CAS  Google Scholar 

  107. Nakanishi, M., Goldstein, J.L., and Brown, M.S. (1988) Multivalent Control of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Mevalonate-Derived Product Inhibits Translation of mRNA and Accelerates Degradation of Enzyme, J. Biol. Chem. 263, 8929–8937.

    PubMed  CAS  Google Scholar 

  108. Roitelman, J., and Simoni, R.D. (1992) Distinct Sterol and Nonsterol Signals for the Regulated Degradation of 3-Hydroxy-3-methylglutaryl-CoA Reductase, J. Biol. Chem. 267, 25264–25273.

    PubMed  CAS  Google Scholar 

  109. Correll, C.C., and Edwards, P.A. (1994) Mevalonic Acid-Dependent Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase in vivo and in vitro, J. Biol. Chem. 269, 633–638.

    PubMed  CAS  Google Scholar 

  110. Correll, C.C., Ng, L., and Edwards, P.A. (1994) Identification of Farnesol as the Non-sterol Derivative of Mevalonic Acid Required for the Accelerated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase, J. Biol. Chem. 269, 17390–17393.

    PubMed  CAS  Google Scholar 

  111. Bradfute, D.L., and Simoni, R.D. (1994) Non-sterol Compounds That Regulate Cholesterogenesis. Analogues of Farnesyl Pyrophosphate Reduce 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Levels, J. Biol. Chem. 269, 6645–6650.

    PubMed  CAS  Google Scholar 

  112. Parker, R.A., Pearce, B.C., Clark, R.W., Gordon, D.A., and Wright, J.J. (1993) Tocotrienols Regulate Cholesterol Production in Mammalian Cells by Post-transcriptional Suppression of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase, J. Biol. Chem. 268, 11230–11238.

    PubMed  CAS  Google Scholar 

  113. Gardner, R.G., and Hampton, R.Y. (1999) A Highly Conserved Signal Controls Degradation of 3-Hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) Reductase in Eukaryotes, J. Biol. Chem. 274, 31671–31678.

    Article  PubMed  CAS  Google Scholar 

  114. Sever, N., Song, B.L., Yabe, D., Goldstein, J.L., Brown, M.S., and DeBose-Boyd, R.A. (2003) Insig-Dependent Ubiquitination and Degradation of Mammalian 3-Hydroxy-3-methylglutaryl-CoA Reductase Stimulated by Sterols and Geranylgeraniol, J. Biol. Chem. 278, 52479–52490.

    Article  PubMed  CAS  Google Scholar 

  115. Peffley, D.M., and Gayen, A.K. (2003) Plant-Derived Monoterpenes Suppress Hamster Kidney Cell 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Synthesis at the Post-transcriptional Level, J. Nutr. 133, 38–44.

    PubMed  CAS  Google Scholar 

  116. Seybold, S.J., and Tittiger, C. (2003) Biochemistry and Molecular Biology of de novo Isoprenoid Pheromone Production in the Scolytidae, Annu. Rev. Entomol. 48, 425–453.

    Article  PubMed  CAS  Google Scholar 

  117. Hall, G.M., Tittiger, C., Blomquist, G.J., Andrews, G.L., Mastick, G.S., Barkawi, L.S., Bengoa, C., and Seybold, S.J. (2002) Male Jeffrey Pine Beetle, Dendroctonus jeffreyi, Synthesizes the Pheromone Component Frontalin in Anterior Midgut Tissue, Insect Biochem. Mol. Biol. 32, 1525–1532.

    Article  PubMed  CAS  Google Scholar 

  118. Tittiger, C., Barkawi, L.S., Bengoa, C.S., Blomquist, G.J., and Seybold, S.J. (2003) Structure and Juvenile Hormone-Mediated Regulation of the HMG-CoA Reductase Gene from the Jeffrey Pine Beetle, Dendroctonus jeffreyi, Mol. Cell. Endocrinol. 199, 11–21.

    Article  PubMed  CAS  Google Scholar 

  119. Stermer, B.A., Bianchini, G.M., and Korth, K.L. (1994) Regulation of HMG-CoA Reductase Activity in Plants, J. Lipid Res. 35, 1133–1140.

    PubMed  CAS  Google Scholar 

  120. Wentzinger, L.F., Bach, T.J., and Hartmann, M.A. (2002) Inhibition of Squalene Synthase and Squalene Epoxidase in Tobacco Cells Triggers an Up-regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, Plant Physiol. 130, 334–346.

    Article  PubMed  CAS  Google Scholar 

  121. Hemmerlin, A., and Bach, T.J. (2000) Farnesol-Induced Cell Death and Stimulation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Activity in Tobacco cv Bright Yellow-2 Cells, Plant Physiol. 123, 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  122. Endo, A., Kuroda, M., and Tsujita, Y. (1976) ML-236A, ML-236B, and ML-236C, New Inhibitors of Cholesterogenesis Produced by Penicillium citrinium, J. Antibiot. (Tokyo) 29, 1346–1348.

    CAS  Google Scholar 

  123. Schafer, W.R., Kim, R., Sterne, R., Thorner, J., Kim, S.H., and Rine, J. (1989) Genetic and Pharmacological Suppression of Oncogenic Mutations in RAS Genes of Yeast and Humans, Science 245, 379–385.

    Article  PubMed  CAS  Google Scholar 

  124. Leonard, S., Beck, L., and Sinensky, M. (1990) Inhibition of Isoprenoid Biosynthesis and the Post-translational Modification of pro-p21, J. Biol. Chem. 265, 5157–5160.

    PubMed  CAS  Google Scholar 

  125. Holstein, S.A., Wohlford-Lenane, C.L., and Hohl, R.J. (2002) Consequences of Mevalonate Depletion. Differential transcriptional, Translational, and Post-translational Up-regulation of Ras, Rap1a, RhoA, and RhoB, J. Biol. Chem. 277, 10678–10682.

    Article  PubMed  CAS  Google Scholar 

  126. Laezza, C., Bucci, C., Santillo, M., Bruni, C.B., and Bifulco, M. (1998) Control of Rab5 and Rab7 Expression by the Isoprenoid Pathway, Biochem. Biophys. Res. Commun. 248, 469–472.

    Article  PubMed  CAS  Google Scholar 

  127. Dimster-Denk, D., Schafer, W.R., and Rine, J. (1995) Control of RAS mRNA Level by the Mevalonate Pathway, Mol. Biol. Cell. 6, 59–70.

    PubMed  CAS  Google Scholar 

  128. Holstein, S.A., Wohlford-Lenane, C.L., and Hohl, R.J. (2002) Isoprenoids Influence the Expression of Ras and Ras-Related Proteins, Biochemistry 41, 13698–13704.

    Article  PubMed  CAS  Google Scholar 

  129. Holstein, S.A., Wohlford-Lenane, C.L., Wiemer, D.F., and Hohl, R.J. (2003) Isoprenoid Pyrophosphate Analogues Regulate Expression of Ras-Related Proteins, Biochemistry 42, 4384–4391.

    Article  PubMed  CAS  Google Scholar 

  130. Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., McMorris, T., Lamph, W.W., et al. (1995) Identification of a Nuclear Receptor That Is Activated by Farnesol Metabolites, Cell 81, 687–693.

    Article  PubMed  CAS  Google Scholar 

  131. Wang, H., Chen, J., Hollister, K., Sowers, L.C., and Forman, B.M. (1999) Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR, Mol. Cell. 3, 543–553.

    Article  PubMed  CAS  Google Scholar 

  132. Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., and Lehmann, J.M. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor, Science 284, 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  133. Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. (1999) Identification of a Nuclear Receptor for Bile Acids, Science 284, 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  134. Hanley, K., Komuves, L.G., Ng, D.C., Schoonjans, K., He, S.S., Lau, P., Bikle, D.D., Williams, M.L., Elias, P.M., Auwerx, J., and Feingold, K.R. (2000) Farnesol Stimulates Differentiation in Epidermal Keratinocytes via PPARα, J. Biol. Chem. 275, 11484–11491.

    Article  PubMed  CAS  Google Scholar 

  135. Mangelsdorf, D.J., Kliewer, S.A., Kakizuka, A., Umesono K., and Evans, R.M. (1993) Retinoid Receptors, Recent Prog. Horm. Res. 48, 99–121.

    PubMed  CAS  Google Scholar 

  136. Harmon, M.A., Boehm, M.F., Heyman, R.A., and Mangelsdorf, D.J. (1995) Activation of Mammalian Retinoid X Receptors by the Insect Growth Regulator Methoprene, Proc. Natl. Acad. Sci. USA 92, 6157–6160.

    Article  PubMed  CAS  Google Scholar 

  137. Gan, X., Kaplan, R., Menke, J.G., MacNaul, K., Chen, Y., Sparrow, C.P., Zhou, G., Wright, S.D., and Cai, T.Q. (2001) Dual Mechanisms of ABCA1 Regulation by Geranylgeranyl Pyrophosphate, J. Biol. Chem. 276, 48702–48708.

    Article  PubMed  CAS  Google Scholar 

  138. Rioja, A., Pizzey, A.R., Marson, C.M., and Thomas, N.S. (2000) Preferential Induction of Apoptosis of Leukaemic Cells by Farnesol, FEBS. Lett. 467, 291–295.

    Article  PubMed  CAS  Google Scholar 

  139. Voziyan, P.A., Haug, J.S., and Melnykovych, G. (1995) Mechanism of Farnesol Cytotoxicity: Further Evidence for the Role of PKC-Dependent Signal Transduction in Farnesol-Induced Apoptotic Cell Death, Biochem. Biophys. Res. Commun. 212, 479–486.

    Article  PubMed  CAS  Google Scholar 

  140. Yasugi, E., Nakata, K., Yokoyama, Y., Kano, K., Dohi, T., and Oshima, M. (1998) Dihydroheptaprenyl and Dihydrodecaprenyl Monophosphates Induce Apoptosis Mediated by Activation of Caspase-3-like Protease, Biochim. Biophys. Acta 1389, 132–140.

    PubMed  CAS  Google Scholar 

  141. Miquel, K., Pradines, A., Terce, F., Selmi, S. and Favre, G. (1998) Competitive Inhibition of Choline Phosphotransferase by Geranylgeraniol and Farnesol Inhibits Phosphatidylcholine Synthesis and Induces Apoptosis in Human Lung Adenocarcinoma A549 Cells, J. Biol. Chem. 273, 26179–26186.

    Article  PubMed  CAS  Google Scholar 

  142. Burke, Y.D., Stark, M.J., Roach, S.L., Sen, S.E., and Crowell, P.L. (1997) Inhibition of Pancreatic Cancer Growth by the Dietary Isoprenoids Farnesol and Geraniol, Lipids 32, 151–156.

    Article  PubMed  CAS  Google Scholar 

  143. Machida, K., Tanaka, T., Fujita, K., and Taniguchi, M. (1998) Farnesol-Induced Generation of Reactive Oxygen Species via Indirect Inhibition of the Mitochondrial Electron Transport Chain in the Yeast Saccharomyces cerevisiae, J. Bacteriol. 180, 4460–4465.

    PubMed  CAS  Google Scholar 

  144. Voziyan, P.A., Goldner, C.M., and Melnykovych, G. (1993) Farnesol Inhibits Phosphatidylcholine Biosynthesis in Cultured Cells by Decreasing Cholinephosphotransferase Activity, Biochem. J. 295, 757–762.

    PubMed  CAS  Google Scholar 

  145. Wright, M.M., Henneberry, A.L., Lagace, T.A., Ridgway, N.D., and McMaster, C.R. (2001) Uncoupling Farnesol-Induced Apoptosis from Its Inhibition of Phosphatidylcholine Synthesis, J. Biol. Chem. 276, 25254–25261.

    Article  PubMed  CAS  Google Scholar 

  146. Yazlovitskaya, E.M., and Melnykovych, G. (1995) Selective Farnesol Toxicity and Translocation of Protein Kinase C in Neoplastic HeLa-S3K and Non-neoplastic CF-3 Cells, Cancer Lett. 88, 179–183.

    Article  PubMed  CAS  Google Scholar 

  147. Machida, K., and Tanaka, T. (1999) Farnesol-Induced Generation of Reactive Oxygen Species Dependent on Mitochondrial Transmembrane Potential Hyperpolarization Mediated by F(0)F(1)-ATPase in Yeast, FEBS Lett. 462, 108–112.

    Article  PubMed  CAS  Google Scholar 

  148. Rajbhandari, I., Takamatsu, S., and Nagle, D.G. (2001) A New Dehydrogeranylgeraniol Antioxidant from Saururus cernuus That Inhibits Intracellular Reactive Oxygen Species (ROS)-Catalyzed Oxidation Within HL-60 Cells, J. Nat. Prod. 64, 693–695.

    Article  PubMed  CAS  Google Scholar 

  149. Roullet, J.B., Xue, H., Chapman, J., McDougal, P., Roullet, C.M., and McCarron, D.A. (1996) Farnesyl Analogues Inhibit Vasoconstriction in Animal and Human Arteries, J. Clin. Invest. 97, 2384–2390.

    PubMed  CAS  Google Scholar 

  150. Roullet, J.B., Luft, U.C., Xue, H., Chapman, J., Bychkov, R., Roullet, C.M., Luft, F.C., Haller, H., and McCarron, D.A. (1997) Farnesol Inhibits L-Type Ca2+ Channels in Vascular Smooth Muscle Cells, J. Biol. Chem. 272, 32240–32246.

    Article  PubMed  CAS  Google Scholar 

  151. Oh, K.B., Miyazawa, H., Naito, T., and Matsuoka, H. (2001) Purification and Characterization of an Autoregulatory Substance Capable of Regulating the Morphological Transition in Candida albicans, Proc. Natl. Acad. Sci. USA 98, 4664–4668.

    Article  PubMed  CAS  Google Scholar 

  152. Kim, S., Kim, E., Shin, D.S., Kang, H., and Oh, K.B. (2002) Evaluation of Morphogenic Regulatory Activity of Farnesoic Acid and Its Derivatives Against Candida albicans Dimorphism, Bioorg. Med. Chem. Lett. 12, 895–898.

    Article  PubMed  Google Scholar 

  153. Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. (2001) Quorum Sensing in the Dimorphic Fungus Candida albicans is Mediated by Farnesol, Appl. Environ. Microbiol. 67, 2982–2992.

    Article  PubMed  CAS  Google Scholar 

  154. Hornby, J.M., Kebaara, B.W., and Nickerson, K.W. (2003) Farnesol Biosynthesis in Candida albicans: Cellular Response to Sterol Inhibition by Zaragozic Acid B, Antimicrob. Agents Chemother. 47, 2366–2369.

    Article  PubMed  CAS  Google Scholar 

  155. Ramage, G., Saville, S.P., Wickes, B.L., and Lopez-Ribot, J.L. (2002) Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule, Appl. Environ. Microbiol. 68, 5459–5463.

    PubMed  CAS  Google Scholar 

  156. Koga, T., Kawada, H., Utsui, Y., Domon, H., Ishii, C., and Yasuda, H. (1996) In-vitro and in-vivo Antibacterial Activity of Plaunotol, a Cytoprotective Antiulcer Agent, Against Heli-cobacter pylori, J. Antimicrob. Chemother. 37, 919–929.

    PubMed  CAS  Google Scholar 

  157. Rasoamiaranjanahary, L., Marston, A., Guilet, D., Schenk, K., Randimbivolona, F., and Hostettmann, K. (2003) Antifungal Diterpenes from Hypoestes serpens (Acanthaceae), Phytochemistry 62, 333–337.

    Article  PubMed  CAS  Google Scholar 

  158. Habtemariam, S. (2003) In vitro Antileishmanial Effects of Antibacterial Diterpenes from Two Ethiopian Premna Species: P. schimperi and P. oligotricha, BMC Pharmacol. 3, 6.

    Article  PubMed  Google Scholar 

  159. Carroll, J., Jonsson, E.N., Ebel, R., Hartman, M.S., Holman, T.R., and Crews, P. (2001) Probing Sponge-Derived Terpenoids for Human 15-Lipoxygenase Inhibitors, J. Org. Chem. 66, 6847–6851.

    Article  PubMed  CAS  Google Scholar 

  160. Klein Gebbinck, E.A., Jansen, B.J., and de Groot, A. (2002) Insect Antifeedant Activity of Clerodane Diterpenes and Related Model Compounds, Phytochemistry 61, 737–770.

    Article  PubMed  CAS  Google Scholar 

  161. Silva, R.M., Santos, F.A., Rao, V.S., Maciel, M.A., and Pinto, A.C. (2001) Blood Glucose- and Triglyceride-Lowering Effect of trans-Dehydrocrotonin, a Diterpene from Croton cajucara Benth., in Rats, Diabetes Obes. Metab. 3, 452–456.

    Article  PubMed  CAS  Google Scholar 

  162. Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matsunaga, S., and Tanaka, R. (2001) Anti-tumor Promoting Diterpenes from the Stem Bark of Thuja standishii (Cupressaceae), Bioorg. Med. Chem. 9, 1911–1921.

    Article  PubMed  CAS  Google Scholar 

  163. Ownby, S.E., and Hohl, R.J. (2002) Farnesol and Geranyl-geraniol: Prevention and Reversion of Lovastatin-Induced Effects in NIH3T3 Cells, Lipids 37, 185–192.

    Article  PubMed  CAS  Google Scholar 

  164. Ohnuma, S., Watanabe, M., and Nishino, T. (1996) Identification and Characterization of Geranylgeraniol Kinase and Geranylgeranyl Phosphate Kinase from the Archaebacterium Sulfolobus acidocaldarius, J. Biochem. (Tokyo) 119, 541–547.

    CAS  Google Scholar 

  165. Kodaira, Y., Usui, K., Kon, I., and Sagami, H. (2002) Formation of (R)-2,3-Dihydrogeranylgeranoic Acid from Geranylgeraniol in Rat Thymocytes, J. Biochem (Tokyo) 132, 327–334.

    CAS  Google Scholar 

  166. Wang, X., Wu, J., Shidoji, Y., Muto, Y., Ohishi, N., Yagi, K., Ikegami, S., Shinki, T., Udagawa, N., Suda, T., and Ishimi, Y. (2002) Effects of Geranylgeranoic Acid in Bone: Induction of Osteoblast Differentiation and Inhibition of Osteoclast Formation, J. Bone Miner. Res. 17, 91–100.

    Article  PubMed  CAS  Google Scholar 

  167. Nishizawa, Y., Tanaka, H., and Kinoshita, K. (1987) Incorporation of Radioactivity into Amino Acids and Fatty Acids After Administration of 14C-Geranylgeranylacetone to Rats, Xenobiotica 17, 469–476.

    PubMed  CAS  Google Scholar 

  168. Nishizawa, Y., Abe, S., Yamada, K., Nakamura, T., Yamatsu, I., and Kinoshita, K. (1987) Identification of Urinary and Microsomal Metabolites of Geranylgeranylacetone in Rats, Xenobiotica 17, 575–584.

    Article  PubMed  CAS  Google Scholar 

  169. Ohizumi, H., Masuda, Y., Nakajo, S., Ohsawa, S., and Nakaya, K. (1995) Geranylgeraniol Is a Potent Inducer of Apoptosis in Tumor Cells, J. Biochem. (Tokyo) 117, 11–13.

    CAS  Google Scholar 

  170. Takeda, Y., Nakao, K., Nakata, K., Kawakami, A., Ida, H., Ichikawa, T., Shigeno, M., Kajiya, Y., Hamasaki, K., Kato, Y., and Eguchi, K. (2001) Geranylgeraniol, an Intermediate Product in Mevalonate Pathway, Induces Apoptotic Cell Death in Human Hepatoma Cells: Death Receptor-Independent Activation of Caspase-8 with Down-Regulation of Bcl-xL Expression, Jpn. J. Cancer Res. 92, 918–925.

    PubMed  CAS  Google Scholar 

  171. Shidoji, Y., Nakamura, N., Moriwaki, H., and Muto, Y. (1997) Rapid Loss in the Mitochondrial Membrane Potential During Geranylgeranoic Acid-Induced Apoptosis, Biochem. Biophys. Res. Commun. 230, 58–63.

    Article  PubMed  CAS  Google Scholar 

  172. Kotake-Nara, E., Kim, S.J., Kobori, M., Miyashita, K., and Nagao, A. (2002) Acyclo-Retinoic Acid Induces Apoptosis in Human Prostate Cancer Cells, Anticancer Res. 22, 689–695.

    PubMed  CAS  Google Scholar 

  173. Nakajo, S., Okamoto, M., Masuda, Y., Sakai, I., Ohsawa, S., and Nakaya, K. (1996) Geranylgeraniol Causes a Decrease in Levels of Calreticulin and Tyrosine Phosphorylation of a 36-kDa Protein Prior to the Appearance of Apoptotic Features in HL-60 Cells, Biochem. Biophys. Res. Commun. 226, 741–745.

    Article  PubMed  CAS  Google Scholar 

  174. Masuda, Y., Nakaya, M., Nakajo, S., and Nakaya, K. (1997) Geranylgeraniol Potently Induces Caspase-3-Like Activity During Apoptosis in Human Leukemia U937 Cells, Biochem. Biophys. Res. Commun. 234, 641–645.

    Article  PubMed  CAS  Google Scholar 

  175. Masuda, Y., Nakaya, M., Aiuchi, T., Hashimoto, S., Nakajo, S., and Nakaya, K. (2000) The Mechanism of Geranylgeraniol-Induced Apoptosis Involves Activation, by a Caspase-3-like Protease, of a c-jun N-Terminal Kinase Signaling Cascade and Differs from Mechanisms of Apoptosis Induced by Conventional Chemotherapeutic Drugs, Leuk. Res. 24, 937–950.

    Article  PubMed  CAS  Google Scholar 

  176. Nakamura, N., Shidoji, Y., Moriwaki, H., and Muto, Y. (1996) Apoptosis in Human Hepatoma Cell Line Induced by 4,5-Didehydro Geranylgeranoic Acid (acyclic retinoid) via Down-Regulation of Transforming Growth Factor-α, Biochem. Biophys. Res. Commun. 219, 100–104.

    Article  PubMed  CAS  Google Scholar 

  177. Murakami, M., Oketani, K., Fujisaki, H., Wakabayashi, T., and Ohgo, T. (1981) Antiulcer Effect of Geranylgeranylacetone, a New Acyclic Polyisoprenoid, on Experimentally Induced Gastric and Duodenal Ulcers in Rats, Arzneimittelforschung. 31, 799–804.

    PubMed  CAS  Google Scholar 

  178. Terano, A., Hiraishi, H., Ota, S., and Sugimoto, T. (1986) Geranylgeranylacetone, a Novel Anti-ulcer Drug, Stimulates Mucus Synthesis and Secretion in Rat Gastric Cultured Cells, Digestion 33, 206–210.

    Article  PubMed  CAS  Google Scholar 

  179. Yoshimura, N., Suzuki, Y., and Saito, Y. (2002) Suppression of Helicobacter pylori-Induced Interleukin-8 Production in Gastric Cancer Cell Lines by an Anti-ulcer Drug, Geranylgeranylacetone, J. Gastroenterol. Hepatol. 17, 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  180. Tsutsumi, S, Rokutan, K., Tsuchiya, T., and Mizushima, T. (1999) Geranylgeranylacetone Suppresses Spontaneous Apoptotic DNA Fragmentation in Cultured Guinea Pig Gastric Pit Cells, Biol. Pharm. Bull. 22, 886–887.

    PubMed  CAS  Google Scholar 

  181. Hirakawa, T., Rokutan, K., Nikawa, T., and Kishi, K. (1996) Geranylgeranylacetone Induces Heat Shock Proteins in Cultured Guinea Pig Gastric Mucosal Cells and Rat Gastric Mucosa, Gastroenterology 111, 345–357.

    Article  PubMed  CAS  Google Scholar 

  182. Tsuruma, T., Yagihashi, A., Hirata, K., Araya, J., Katsuramaki, T., Tarumi, K., Yanai, Y., and Watanabe, N. (2000) Induction of Heat Shock Protein-70 (hsp-70) by Intraarterial Administration of Geranylgeranylacetone, Transplant. Proc. 32, 1631–1633.

    Article  PubMed  CAS  Google Scholar 

  183. Fujiki, M., Kobayashi, H., Abe, T., and Ishii, K. (2003) Astroglial Activation Accompanies Heat Shock Protein Upregulation in Rat Brain Following Single Oral Dose of Geranylgeranylacetone, Brain Res. 991, 254–257.

    Article  PubMed  CAS  Google Scholar 

  184. Caprioli, J., Ishii, Y., and Kwong, J.M. (2003) Retinal Ganglion Cell Protection with Geranylgeranylacetone, a Heat Shock Protein Inducer, in a Rat Glaucoma Model, Trans. Am. Ophthalmol. Soc. 101, 39–50.

    PubMed  Google Scholar 

  185. Fudaba, Y., Ohdan, H., Tashiro, H., Ito, H., Fukuda, Y., Dohi, K., and Asahara, T. (2001) Geranylgeranylacetone, a Heat Shock Protein Inducer, Prevents Primary Graft Nonfunction in Rat Liver Transplantation, Transplantation 72, 184–189.

    Article  PubMed  CAS  Google Scholar 

  186. Yamanaka, K., Takahashi, N., Ooie, T., Kaneda, K., Yoshimatsu, H., and Saikawa, T. (2003) Role of Protein Kinase C in Geranylgeranylacetone-Induced Expression of Heat-Shock Protein 72 and Cardioprotection in the Rat Heart, J. Mol. Cell. Cardiol. 35, 785–794.

    Article  PubMed  CAS  Google Scholar 

  187. Koga, T., Watanabe, H., Kawada, H., Takahashi, K., Utsui, Y., Domon, H., Ishii, C., Narita, T., and Yasuda, H. (1998) Interactions of Plaunotol with Bacterial Membranes, J. Antimicrob. Chemother. 42, 133–140.

    Article  PubMed  CAS  Google Scholar 

  188. Ushiyama, S., Matsuda, K., Asai, F., and Yamazaki, M. (1987) Stimulation of Prostaglandin Production by (2E, 6Z, 10E)-7-Hydroxymethyl-3,11,15-trimethyl-2,6,10,14-hexadecatetraen-1-ol (plaunotol_, a New Anti-Ulcer Drug, in vitro and in vivo, Biochem. Pharmacol. 36, 369–375.

    Article  PubMed  CAS  Google Scholar 

  189. Chang, J.H., Watanabe, S., Shiratori, K., Moriyoshi, Y., and Takeuchi, T. (1989) Plaunotol Stimulates Endogenous Secretin Release and Exocrine Pancreatic Secretion in Rats, Digestion 44, 142–147.

    Article  PubMed  CAS  Google Scholar 

  190. Okabe, N., Okada, M., Sakai, T., and Kuroiwa, A. (1995) Effect of Plaunotol on Superoxide Production Activity in vivo, Dig. Dis. Sci. 40, 2321–2322.

    Article  PubMed  CAS  Google Scholar 

  191. Murakami, K., Okajima, K., Harada, N., Isobe, H., Liu, W., Johno, M., and Okabe, H. (1999) Plaunotol Prevents Indomethacin-Induced Gastric Mucosal Injury in Rats by Inhibiting Neutrophil Activation, Aliment. Pharmacol. Ther. 13, 521–530.

    Article  PubMed  CAS  Google Scholar 

  192. Zimmermann, P.R., Chatfield, R.B., Fishman, J., Crutzen, P.J., and Hanst, P.L. (1978) Estimates of the Production of CO and H2 from the Oxidation of Hydrocarbon Emissions from Vegetation, Geophys. Res. Lett. 5, 679–682.

    Google Scholar 

  193. Rontani, J.F., Bonin, P.C., and Volkman, J.K. (1999) Biodegradation of Free Phytol by Bacterial Communities Isolated from Marine Sediments Under Aerobic and Denitrifying Conditions, Appl. Environ. Microbiol. 65, 5484–5492.

    PubMed  CAS  Google Scholar 

  194. Pirnik, M.P., Atlas, R.M., and Bartha, R. (1974) Hydrocarbon Metabolism by Brevibacterium erythrogenes: Normal and Branched Alkanes, J. Bacteriol. 119, 868–878.

    PubMed  CAS  Google Scholar 

  195. Berthou, F., and Friovourt, M.P. (1981) Gas Chromatographic Separation of Diastereomeric Isoprenoids as Molecular Markers of Oil Pollution, J. Chromatogr. A. 219, 393–402.

    Article  CAS  Google Scholar 

  196. Harder, J., and Probian, C. (1995) Microbial Degradation of Monoterpenes in the Absence of Molecular Oxygen, Appl. Environ. Microbiol. 61, 3804–3808.

    PubMed  CAS  Google Scholar 

  197. Rontani, J.F., Mouzdahir, A., Michotey, V., and Bonin, P. (2002) Aerobic and Anaerobic Metabolism of Squalene by a Denitrifying Bacterium Isolated from Marine Sediment, Arch. Microbiol. 178, 279–287.

    Article  PubMed  CAS  Google Scholar 

  198. Harder, J., and Probian, C. (1997) Anaerobic Mineralization of Cholesterol by a Novel Type of Denitrifying Bacterium, Arch. Microbiol. 167, 269–274.

    Article  PubMed  CAS  Google Scholar 

  199. Misra, G., Pavlostathis, S.G., Perdue, E.M., and Araujo, R. (1996) Aerobic Biodegradation of Selected Monoterpenes, Appl. Microbiol. Biotechnol. 45, 831–838.

    Article  PubMed  CAS  Google Scholar 

  200. Hara, A., Syutsubo, K., and Harayama, S. (2003) Alcanivorax Which Prevails in Oil-Contaminated Seawater Exhibits Broad Substrate Specificity for Alkane Degradation, Environ. Microbiol. 5, 746–753.

    Article  PubMed  CAS  Google Scholar 

  201. Linos, A., Berekaa, M.M., Reichelt, R., Keller, U., Schmitt, J., Flemming, H.C., Kroppenstedt, R.M., and Steinbuchel, A. (2000) Biodegradation of cis-1,4-Polyisoprene Rubbers by Distinct Actinomycetes: Microbial Strategies and Detailed Surface Analysis, Appl. Environ. Microbiol. 66, 1639–1645.

    Article  PubMed  CAS  Google Scholar 

  202. Brown, A.G., Smale, T.C., King, T.J., Hasenkamp, R., and Thompson, R.H. (1976) Crystal and Molecular Structure of Compactin, a New Antifungal Metabolite from Penicillium brevicopactum, J. Chem. Soc. Perkin I, 1165–1170.

    Article  Google Scholar 

  203. Tanzawa, K., and Endo, A. (1979) Kinetic Analysis of the Reaction Catalyzed by Rat-Liver 3-Hydroxy-3-methylglutaryl-Coenzyme-A Reductase Using Two Specific Inhibitors, Eur. J. Biochem. 98, 195–201.

    Article  PubMed  CAS  Google Scholar 

  204. Kaneko, I., Hazama-Shimada, Y., and Endo, A. (1978) Inhibitory Effects on Lipid Metabolism in Cultured Cells of ML-236B, a Potent Inhibitor of 3-Hydroxy-3-methylglutary-Coenzyme-A Reductase, Eur. J. Biochem. 87, 313–321.

    Article  PubMed  CAS  Google Scholar 

  205. Doi, O., and Endo, A. (1978) Specific Inhibition of Desmosterol Synthesis by ML-236B in Mouse LM Cells Grown in Suspension in a Lipid-Free Medium, Jpn. J. Med. Sci. Biol. 31, 225–233.

    PubMed  CAS  Google Scholar 

  206. Tsujita, Y., Kuroda, M., Tanzawa, K., Kitano, N., and Endo, A. (1979) Hypolipidemic Effects in Dogs of ML-236B, a Competitive Inhibitor of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, Atherosclerosis 32, 307–313.

    Article  PubMed  CAS  Google Scholar 

  207. Kuroda, M., Tsujita, Y., Tanzawa, K., and Endo, A. (1979) Hypolipidemic Effects in Monkeys of ML-236B, a Competitive Inhibitor of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, Lipids 14, 585–589.

    PubMed  CAS  Google Scholar 

  208. Yamamoto, A., Sudo, H., and Endo, A. (1980) Therapeutic Effects of ML-236B in Primary Hypercholesterolemia, Atherosclerosis 35, 259–266.

    Article  PubMed  CAS  Google Scholar 

  209. Alberts, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E. et al. (1980) Mevinolin: A Highly Potent Competitive Inhibitor of Hydroxymethylglutaryl-Coenzyme A Reductase and a Cholesterol-Lowering Agent, Proc. Natl. Acad. Sci. USA 77, 3957–3961.

    Article  PubMed  CAS  Google Scholar 

  210. Gunde-Cimerman, N., Plemenitas, A., and Cimerman, A. (1993) Pleurotus Fungi Produce Mevinolin, an Inhibitor of HMG CoA Reductase, FEMS Microbiol. Lett. 113, 333–337.

    Article  PubMed  CAS  Google Scholar 

  211. Gunde-Cimerman, N., Plemenitas, A., and Cimerman, A. (1995) A Hydroxymethylglutaryl-CoA Reductase Inhibitor Synthesized by Yeasts, FEMS Microbiol. Lett. 132, 39–43.

    Article  PubMed  CAS  Google Scholar 

  212. Endo, A. (1979) Monacolin K, a New Hypocholesterolemic Agent Produced by a Monascus Species, J. Antibiot. (Tokyo) 32, 852–854.

    CAS  Google Scholar 

  213. Shindia, A.A. (2000) Studies on Mevinolin Production by Some Fungi, Microbios 102, 53–61.

    PubMed  CAS  Google Scholar 

  214. Topol, E.J. (2004) Intensive Statin Therapy—A Sea Change in Cardiovascular Prevention, New Engl. J. Med. 350, 1562–1564.

    Article  PubMed  CAS  Google Scholar 

  215. Chan, K.K., Oza, A.M., and Siu, L.L. (2003) The Statins as Anticancer Agents, Clin. Cancer Res. 9, 10–19.

    PubMed  CAS  Google Scholar 

  216. Meske, V., Albert, F., Richter, D., Schwarze, J., and Ohm, T.G. (2003) Blockade of HMG-CoA Reductase Activity Causes Changes in Microtubule-Stabilizing Protein Tau via Suppression of Geranylgeranylpyrophosphate Formation: Implications for Alzheimer's Disease, Eur. J. Neurosci. 17, 93–102.

    Article  PubMed  CAS  Google Scholar 

  217. Bauer, D.C., Mundy, G.R., Jamal, S.A., Black, D.M., Cauley, J.A., Ensrud, K.E., van der Klift, M., and Pols, H.A. (2004) Use of Statins and Fracture: Results of 4 Prospective Studies and Cumulative Meta-analysis of Observational Studies and Controlled Trials, Arch. Intern. Med. 164, 146–152.

    Article  PubMed  CAS  Google Scholar 

  218. Spin, J.M., and Vagelos, R.H. (2003) Early Use of Statins in Acute Coronary Syndromes, Curr. Atheroscler. Rep. 5, 44–51.

    PubMed  Google Scholar 

  219. Weis, M., Heeschen, C., Glassford, A.J., and Cooke, J.P. (2002) Statins Have Biphasic Effects on Angiogenesis, Circulation 105, 739–745.

    Article  PubMed  CAS  Google Scholar 

  220. Patel, R., Nagueh, S.F., Tsybouleva, N., Abdellatif, M., Lutucuta, S., Kopelen, H.A., Quinones, M.A., Zoghbi, W.A., Entman, M.L., Robert, R., and Marian, A.J. (2001) Simvastatin Induces Regression of Cardiac Hypertrophy and Fibrosis and Improves Cardiac Function in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy, Circulation 104, 317–324.

    PubMed  CAS  Google Scholar 

  221. Blanco-Colio, L.M., Tunon, J., Martin-Ventura, J.L., and Egido, J. (2003) Anti-inflammatory and Immunomodulatory Effects of Statins, Kidney Int. 63, 12–23.

    Article  PubMed  CAS  Google Scholar 

  222. Wolfrum, S., Jensen, K.S., and Liao, J.K. (2003) Endothelium-Dependent Effects of Statins, Arterioscler. Thromb. Vasc. Biol. 23, 729–736.

    Article  PubMed  CAS  Google Scholar 

  223. Krysiak, R., Okopien, B., and Herman, Z. (2003) Effects of HMG-CoA Reductase Inhibitors on Coagulation and Fibrinolysis Processes, Drugs. 63, 1821–1854.

    Article  PubMed  CAS  Google Scholar 

  224. Fenton, J.W., Jr., and Shen, G.X. (1999) Statins as Cellular Antithrombotics, Haemostasis 29, 166–169.

    Article  PubMed  CAS  Google Scholar 

  225. Staunton, J., and Weissman, K.J. (2001) Polyketide Biosynthesis: A Millennium Review, Nat. Prod. Rep. 18, 380–416.

    Article  PubMed  CAS  Google Scholar 

  226. Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Hosobuchi, M., and Yoshikawa, H. (2002) Molecular Cloning and Characterization of an ML-236B (compactin) Biosynthetic Gene Cluster in Penicillium citrinum, Mol. Genet. Genomics 267, 636–646.

    Article  PubMed  CAS  Google Scholar 

  227. Hutchinson, C.R., Kennedy, J., Park, C., Kendrew, S., Auclair, K., and Vederas, J. (2000) Aspects of the Biosynthesis of Nonaromatic Fungal Polyketides by Iterative Polyketide Synthases, Antonie van Leeuwenhoek 78, 287–295.

    Article  PubMed  CAS  Google Scholar 

  228. Hajjaj, H., Niederberger, P., and Duboc, P. (2001) Lovastatin Biosynthesis by Aspergillus terreus in a Chemically Defined Medium, Appl. Environ. Microbiol. 67, 2596–2602.

    Article  PubMed  CAS  Google Scholar 

  229. Shindia, A.A. (2001) Some Nutritional Factors Influencing Mevinolin Production by Aspergillus terreus Strain, Folia Microbiol. (Praha) 46, 413–416.

    CAS  Google Scholar 

  230. Ikeura, R., Murakawa, S., and Endo, A. (1988) Growth Inhibition of Yeast by Compactin (ML-236B) Analogues, J. Antibiot. (Tokyo) 41, 1148–1150.

    CAS  Google Scholar 

  231. Bach, T.J., and Lichtenthaler, H.K. (1982) Mevinolin: A Highly Specific Inhibitor of Microsomal 3-Hydroxy-3-methylglutary-Coenzyme A Reductase of Radish Plants, Z. Naturforsch. [C] 37, 46–50.

    CAS  Google Scholar 

  232. Josekutty, P.C. (1998) Inhibition of Plant Growth by Mevinolin and Reversal of This Inhibition by Isoprenoids, S. Afr. J. Bot. 64, 18–24.

    CAS  Google Scholar 

  233. van Beek, E., Pieterman, E., Cohen, L., Lowik, C., and Papapoulos, S. (1999) Farnesyl Pyrophosphate Synthase Is the Molecular Target of Nitrogen-Containing Bisphosphonates, Biochem. Biophys. Res. Commun. 264, 108–111.

    Article  PubMed  Google Scholar 

  234. Keller, R.K., and Fliesler, S.J. (1999) Mechanism of Aminobisphosphonate Action: Characterization of Alendronate Inhibition of the Isoprenoid Pathway, Biochem. Biophys. Res. Commun. 266, 560–563.

    Article  PubMed  CAS  Google Scholar 

  235. Bergstrom, J.D., Bostedor, R.G., Masarachia, P.J., Reszka, A.A., and Rodan, G. (2000) Alendronate Is a Specific, Nanomolar Inhibitor of Farnesyl Diphosphate Synthase, Arch. Biochem. Biophys. 373, 231–241.

    Article  PubMed  CAS  Google Scholar 

  236. Luckman, S.P., Hughes, D.E., Coxon, F.P., Graham, R., Russell, G., and Rogers, M.J. (1998) Nitrogen-Containing Bisphosphonates Inhibit the Mevalonate Pathway and Prevent Post-translational Prenylation of GTP-Binding Proteins, Including Ras, J. Bone Miner. Res. 13, 581–589.

    Article  PubMed  CAS  Google Scholar 

  237. Reszka, A.A., Halasy-Nagy, J.M., Masarachia, P.J., and Rodan, G.A. (1999) Bisphosphonates Act Directly on the Osteoclast to Induce Caspase Cleavage of Mst1 Kinase During Apoptosis. A Link Between Inhibition of the Mevalonate Pathway and Regulation of an Apoptosis-Promoting Kinase, J. Biol. Chem. 274, 34967–34973.

    Article  PubMed  CAS  Google Scholar 

  238. Benford, H.L., Frith, J.C., Auriola, S., Monkkonen, J., and Rogers, M.J. (1999) Farnesol and Geranylgeraniol Prevent Activation of Caspases by Aminobisphosphonates: Biochemical Evidence for Two Distinct Pharmacological Classes of Bisphosphonate Drugs, Mol. Pharmacol. 56, 131–140.

    PubMed  CAS  Google Scholar 

  239. Fisher, J.E., Rogers, M.J., Halasy, J.M., Luckman, S.P., Hughes, D.E., Masarachia, P.J., Wesolowski, G., Russell, R.G., Rodan, G.A., and Reszka, A.A. (1999) Alendronate Mechanism of Action: Geranylgeraniol, an Intermediate in the Mevalonate Pathway, Prevents Inhibition of Osteoclast Formation, Bone Resorption, and Kinase Activation in vitro, Proc. Natl. Acad. Sci. USA 96, 133–138.

    Article  PubMed  CAS  Google Scholar 

  240. van beek, E., Lowik, C., van der Pluijm, G., and Papapoulos, S. (1999) The Role of Geranylgeranylation in Bone Resorption and Its Suppression by Bisphosphonates in Fetal Bone Explants in vitro: A Clue to the Mechanism of Action of Nitrogen-Containing Bisphosphonates, J. Bone Miner. Res. 14, 722–729.

    Article  Google Scholar 

  241. Virtanen, S.S., Vaananen, H.K., Harkonen, P.L., and Lakkakorpi, P.T. (2002) Alendronate Inhibits Invasion of PC-3 Prostate Cancer Cells by Affecting the Mevalonate Pathway, Cancer Res. 62, 2708–2714.

    PubMed  CAS  Google Scholar 

  242. Szabo, C.M., Matsumura, Y., Fukura, S., Martin, M.B., Sanders, J.M., Sengupta, S., Cieslak, J.A., Loftus, T.C., Lea, C.R., Lee, H.J., et al. (2002) Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates and Diphosphates: A Potential Route to New Bone Antiresorption and Antiparasitic Agents, J. Med. Chem. 45, 2185–2196.

    Article  PubMed  CAS  Google Scholar 

  243. Ohashi, K., Osuga, J., Tozawa, R., Kitamine, T., Yagyu, H., Sekiya, M., Tomita, S., Okazaki, H., Tamura, Y., Yahagi, N., et al. (2003) Early Embryonic Lethality Caused by Targeted Disruption of the 3-Hydroxy-3-methylglutaryl-CoA Reductase Gene, J. Biol. Chem. 278, 42936–42941.

    Article  PubMed  CAS  Google Scholar 

  244. Berger, R., Smit, G.P., Schierbeek, H., Bijsterveld, K., and le Coultre, R. (1985) Mevalonic Aciduria: An Inborn Error of Cholesterol Biosynthesis?, Clin. Chim. Acta 152, 219–222.

    Article  PubMed  CAS  Google Scholar 

  245. Houten, S.M., Frenkel, J., and Waterham, H.R. (2003) Isoprenoid Biosynthesis in Hereditary Periodic Fever Syndromes and Inflammation, Cell. Mol. Life Sci. 60, 1118–1134.

    PubMed  CAS  Google Scholar 

  246. van der Meer, J.W., Vossen, J.M., Radl, J., van Nieuwkoop, J.A., Meyer, C.J., Lobatto, S., and van Furth, R. (1984) Hyperimmunoglobulinaemia D and Periodic Fever: A New Syndrome, Lancet 1, 1087–1090.

    PubMed  Google Scholar 

  247. Houten, S.M., Romeijn, G.J., Koster, J., Gray, R.G., Darbyshire, P., Smit, G.P., de Klerk, J.B., Duran, M., Gibson, K.M., Wanders, R.J., and Waterham, H.R. (1999) Identification and Characterization of Three Novel Missense Mutations in Mevalonate Kinase cDNA Causing Mevalonic Aciduria, a Disorder of Isoprene Biosynthesis, Hum. Mol. Genet. 8, 1523–1528.

    Article  PubMed  CAS  Google Scholar 

  248. Houten, S.M., Kuis, W., Duran, M., de Koning, T.J., van Royen-Kerkhof, A., Romeijn, G.J., Frenkel, J., Dorland, L., de Barse, M.M., Huijbers, W.A., et al. (1999) Mutations in MVK, Encoding Mevalonate Kinase, Cause Hyperimmunoglobulinaemia D and Periodic Fever Syndrome, Nat. Genet. 22, 175–177.

    Article  PubMed  CAS  Google Scholar 

  249. Houten, S.M., Koster, J., Romeijn, G.J., Frenkel, J., Di Rocco, M., Caruso, U., Landrieu, P., Kelley, R.I., Kuis, W., Poll-The, B.T., et al. (2001) Organization of the Mevalonate Kinase (MVK) Gene and Identification of Novel Mutations Causing Mevalonic Aciduria and Hyperimmunoglobulinaemia D and Periodic Fever Syndrome, Eur. J. Hum. Genet. 9, 253–259.

    Article  PubMed  CAS  Google Scholar 

  250. Hinson, D.D., Ross, R.M., Krisans, S., Shaw, J.L., Kozich, V., Rolland, M.O., Divry, P., Mancini, J., Hoffmann, G.F., and Gibson, K.M. (1999) Identification of a Mutation Cluster in Mevalonate Kinase Deficiency, Including a New Mutation in a Patient of Mennonite Ancestry, Am. J. Hum. Genet. 65, 327–335.

    Article  PubMed  CAS  Google Scholar 

  251. Hinson, D.D., Chambliss, K.L., Hoffmann, G.F., Krisans, S., Keller, R.K., and Gibson, K.M. (1997) Identification of an Active Site Alanine in Mevalonate Kinase Through Characterization of a Novel Mutation in Mevalonate Kinase Deficiency, J. Biol. Chem. 272, 26756–26760.

    Article  PubMed  CAS  Google Scholar 

  252. Frenkel, J., Houten, S.M., Waterham, H.R., Wanders, R.J., Rijkers, G.T., Duran, M., Kuijpers, T.W., van Luijk, W., Poll-The, B.T., and Kuis, W. (2001) Clinical and Molecular Variability in Childhood Periodic Fever with Hyperimmunoglobulinaemia D, Rheumatology 40, 579–584.

    Article  PubMed  CAS  Google Scholar 

  253. Hoffmann, G.F., Charpentier, C., Mayatepek, E., Mancini, J., Leichsenring, M., Gibson, K.M., Divry, P., Hrebicek, M., Lehnert, W., Sartor, K., et al. (1993) Clinical and Biochemical Phenotype in 11 Patients with Mevalonic Aciduria, Pediatrics 91, 915–921.

    PubMed  CAS  Google Scholar 

  254. Houten, S.M., Frenkel, J., Rijkers, G.T., Wanders, R.J., Kuis, W., and Waterham, H.R. (2002) Temperature Dependence of Mutant Mevalonate Kinase Activity as a Pathogenic Factor in Hyper-IgD and Periodic Fever Syndrome, Hum. Mol. Genet. 11, 3115–3124.

    Article  PubMed  CAS  Google Scholar 

  255. Hoffmann, G., Gibson, K.M., Nyhan, W.L., and Sweetman, L. (1988) Mevalonic Aciduria: Pathobiochemical Effects of Mevalonate Kinase Deficiency on Cholesterol Metabolism in Intact Fibroblasts, J. Inherit. Metab. Dis. 11, 229–232.

    Article  PubMed  Google Scholar 

  256. Gibson, K.M., Hoffmann, G., Schwall, A., Broock, R.L., Aramaki, S., Sweetman, L., Nyhan, W.L., Brandt, I.K., Wappner, R.S., Lehnert, W., and Trefz, F.H. (1990) 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Activity in Cultured Fibroblasts from Patients with Mevalonate Kinase Deficiency: Differential Response to Lipid Supplied by Fetal Bovine Serum in Tissue Culture Medium, J. Lipid Res. 31, 515–521.

    PubMed  CAS  Google Scholar 

  257. Hubner, C., Hoffmann, G.F., Charpentier, C., Gibson, K.M., Finckh, B., Puhl, H., Lehr, H.A., and Kohlschutter, A. (1993) Decreased Plasma Ubiquinone-10 Concentration in Patients with Mevalonate Kinase Deficiency, Pediatr. Res. 34, 129–133.

    PubMed  CAS  Google Scholar 

  258. Hoffmann, G.F., Wiesmann, U.N., Brendel, S., Keller, R.K., and Gibson, K.M. (1997) Regulatory Adaption of Isoprenoid Biosynthesis and the LDL Receptor Pathway in Fibroblasts from Patients with Mevalonate Kinase Deficiency, Pediatr. Res. 41, 541–546.

    PubMed  CAS  Google Scholar 

  259. Houten, S.M., Schneiders, M.S., Wanders, R.J., and Waterham, H.R. (2003) Regulation of Isoprenoid/Cholesterol Biosynthesis in Cells from Mevalonate Kinase-Deficient Patients, J. Biol. Chem. 278, 5736–5743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Hohl.

About this article

Cite this article

Holstein, S.A., Hohl, R.J. Isoprenoids: Remarkable diversity of form and function. Lipids 39, 293–309 (2004). https://doi.org/10.1007/s11745-004-1233-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1233-3

Keywords

Navigation