Skip to main content
Log in

Removal of Direct Yellow 27 Dye by Ionic Flocculation: The Use of an Environmentally Friendly Surfactant

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The presence of dyes is one of the main contributors to the organic load in textile effluents. In this study a mixture of surfactants, produced from animal/vegetable fats, was used to remove the Direct Yellow 27 dye from a synthetic wastewater through an ionic flocculation process. It was evaluated the effect of contact time, temperature, and surfactant concentration on dye removal efficiency. It was also evaluated the kinetics, equilibrium, and diffusion mechanism of the process. The kinetics of the process was well described by both Pseudo-second order and Elovich models. The transport of dye molecules to the surfactant flocs is controlled by the external layer. Equilibrium data showed a good fit to the Langmuir model. A removal rate of 93% was achieved in a single stage, after 5 h of contact time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Snowden-Swan LJ. Industrial pollution prevention handbook—pollution prevention in the textile industries. New York: McGraw-Hdl Inc; 1995.

    Google Scholar 

  2. Hunger K. Industrial dyes: chemistry, properties, applications. Weinheim: WILEY-VCH Verlag GmbH & Co.; 2003.

    Google Scholar 

  3. Lau Y, Wong Y, Teng T, Morad N, Rafatullah M, Ong S. Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chem Eng J. 2014;246:383–90.

    Article  CAS  Google Scholar 

  4. Nawaz MS, Ahsan M. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alex Eng J. 2014;53:717–22. doi:10.1016/j.aej.2014.06.007.

    Article  Google Scholar 

  5. Albuquerque LF, Salgueiro AA, Melo JLS, Chiavone-Filho O. Coagulation of indigo blue present in dyeing wastewater using a residual bittern. Sep Purif Technol. 2013;104:246–9. doi:10.1016/j.seppur.2012.12.005.

    Article  CAS  Google Scholar 

  6. Karthikeyan K, Titus A, Gnanamani A, Mandal AB, Sekaran G. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination. 2011;281:438–45. doi:10.1016/j.desal.2011.08.019.

    Article  CAS  Google Scholar 

  7. Gozálvez-Zafrilla JM, Sanz-Escribano D, Lora-García J, Hidalgo MCL. Nanofiltration of secondary effluent for wastewater reuse in the textile industry. Desalination. 2008;222:272–9. doi:10.1016/j.desal.2007.01.173.

    Article  Google Scholar 

  8. Andrzejewska A, Krysztafkiewicz A, Jesionowski T. Treatment of textile dye wastewater using modified silica. Dyes Pigments. 2007;75:116–24. doi:10.1016/j.dyepig.2006.05.027.

    Article  CAS  Google Scholar 

  9. Adak A, Bandyopadhyay M, Pal A. Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep Purif Technol. 2005;44:139–44. doi:10.1016/j.seppur.2005.01.002.

    Article  CAS  Google Scholar 

  10. Alver E, Metin AÜ. Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J. 2012;200–202:59–67. doi:10.1016/j.cej.2012.06.038.

    Article  Google Scholar 

  11. Melo RPF, Barros Neto EL, Moura MCPA, Castro Dantas TN, Dantas Neto AA, Oliveira HNM. Removal of Reactive Blue 19 using nonionic surfactant in cloud point extraction. Sep Purif Technol. 2014;138:71–6. doi:10.1016/j.seppur.2014.10.009.

    Article  CAS  Google Scholar 

  12. Beltrame LTC, Dantas Neto AA, Castro Dantas TN, Barros Neto EL, Lima FFS. Influence of cosurfactant in microemulsion systems for color removal from textile wastewater. J Chem Technol Biotechnol. 2005;80:92–8. doi:10.1002/jctb.1162.

    Article  CAS  Google Scholar 

  13. Ahmad AL, Puasa SW, Zulkali MMD. Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution. Desalination. 2006;191:153–61. doi:10.1016/j.desal.2005.07.022.

    Article  CAS  Google Scholar 

  14. Myers D. Surfactant science and technology. 3rd ed. Hoboken: Wiley; 2006.

    Google Scholar 

  15. Zapf A, Beck R, Platz G, Hoffmann H. Calcium surfactants: a review. Adv Colloid Interface Sci. 2003;100–102:349–80. doi:10.1016/S0001-8686(02)00065-9.

    Article  Google Scholar 

  16. Melo RPF, Barros Neto EL, Moura MCPA, Castro Dantas TN, Dantas Neto AA, Oliveira HNM. Removal of direct Yellow 27 dye using animal fat and vegetable oil-based surfactant. J. Water Process Eng. 2015;7:196–202. doi:10.1016/j.jwpe.2015.06.009.

    Article  Google Scholar 

  17. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–65. doi:10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  18. Wu F, Tseng R, Juang R. Characteristic of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 2009;150:366–73. doi:10.1016/j.cej.2009.01.014.

    Article  CAS  Google Scholar 

  19. Allen SJ, McKay G, Khader KYH. Intraparticle diffusion of a basic dye during adsorption into sphagnum peat. Environ Pollut. 1989;56:39–50. doi:10.1016/0269-7491(89)90120-6.

    Article  CAS  Google Scholar 

  20. Zhou C, Wu Q, Lei T, Negulescu II. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J. 2014;251:17–24. doi:10.1016/j.cej.2014.04.034.

    Article  CAS  Google Scholar 

  21. Hameed BH, Tan IAW, Ahmad AL. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem Eng J. 2008;144:235–44. doi:10.1016/j.cej.2008.01.028.

    Article  CAS  Google Scholar 

  22. Loganathan S, Tikmani M, Edubilli S, Mishra A, Ghoshal AK. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature. Chem Eng J. 2014;256:1–8. doi:10.1016/j.cej.2014.06.091.

    Article  CAS  Google Scholar 

  23. Tang H, Zhou W, Zhang L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater. 2012;209–210:218–25. doi:10.1016/j.jhazmat.2012.01.010.

    Article  Google Scholar 

  24. Dotto GL, Pinto LAA. Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism. J Hazard Mater. 2011;187:164–70. doi:10.1016/j.jhazmat.2011.01.016.

    Article  CAS  Google Scholar 

  25. Abramian L, El-Rassy H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J. 2009;150:403–10. doi:10.1016/j.cej.2009.01.019.

    Article  CAS  Google Scholar 

  26. Sun Q, Yang L. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res. 2003;37:1535–44. doi:10.1016/S0043-1354(02)00520-1.

    Article  CAS  Google Scholar 

  27. Duan S, Tang R, Xue Z, Zhang X, Zhao Y, Zhang W, Zhang J, Wang B, Zeng S, Sun D. Effective removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: synthesis and study on the kinetic and thermodynamic behaviors for its adsorption. Colloids Surf A Physicochem Eng Asp. 2015;469:211–23. doi:10.1016/j.colsurfa.2015.01.029.

    Article  CAS  Google Scholar 

  28. Castro Dantas TN, Dantas Neto AA, Moura MCPA, Barros Neto EL, Paiva Telemaco E. Chromium adsorption by chitosan impregnated with microemulsion. Langmuir. 2001;17:4256–60. doi:10.1021/la001124s.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Federal University of Rio Grande do Norte (UFRN), especially to the Chemical Engineering Graduate Program, the Center for Teaching and Research in Oil and Gas (NUPEG), and the Textile Engineering Laboratory for the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Paulo Fonseca Melo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, R.P.F., de Barros Neto, E.L., Moura, M.C.P.d. et al. Removal of Direct Yellow 27 Dye by Ionic Flocculation: The Use of an Environmentally Friendly Surfactant. J Surfact Deterg 20, 459–465 (2017). https://doi.org/10.1007/s11743-016-1913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1913-9

Keywords

Navigation