Skip to main content
Log in

Metal-Catalyzed Alkene Functionalization Reactions Towards Production of Detergent and Surfactant Feedstocks

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Metal complexes have been used as catalysts in alkene transformation reactions to produce alcohols, esters, and organic acids as potential raw materials for the manufacture of detergents, perfumes, and other fine chemicals. Herein, we report the use of palladium(II) and ruthenium complexes as efficient catalyst precursors for the methoxycarbonylation, hydrogenolysis, and ethoxylation reactions of higher alkenes. The palladium catalysts showed high chemoselectivity (>98 %) and regioselectivities of about 40 % towards the formation of esters and branched isomers, respectively. Subsequent hydrogenolysis of the esters to the corresponding alcohols was achieved using ruthenium catalysts. Reactions of the esters and alcohols with ethylene oxide using calcinated aluminum oxide catalysts produced the corresponding alcohol and methyl ester ethoxylates, respectively. The identity of the phosphine derivatives, catalyst loading, reaction time, temperature, and pressure were found to influence the catalytic activity and regioselectivity of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Zhou H, Cheng J, Lu S, Fu H, Wang H (1998) Catalytic carbonylation of α-(6-methoxyl-2 naphthyl)ethanol to methyl esters of naproxen using PdCl2–CuCl2–PPh3–acid catalyst system. J Organomet Chem 556:239–242

    Article  CAS  Google Scholar 

  2. Jang EJ, Lee KH, Lee JS, Kim YG (1999) Regioselective synthesis of ibuprofen via the palladium complex catalyzed hydrocarboxylation of 1-(4-isobutylphenyl)ethanol. J Mol Catal A 138:25–36

    Article  CAS  Google Scholar 

  3. Kollar L (ed) (2008) Carbonylation methods. Wiley-VCH, Weinheim

  4. Cornils B, Herrmann WA (eds) (1996) Applied homogeneous catalysis with organometallic compounds. VCH, Weinheim

  5. Bertoux F, Castanet Y, Civade E, Monflier E, Mortreux A (1998) Palladium-catalyzed hydroesterification of propene into methyl 2-methylpropanoate at room temperature and atmospheric pressure. Influence of various parameters on the activity and selectivity of the reactions. Catal Lett 54:199–205

    Article  CAS  Google Scholar 

  6. Tsuji M, Takahashi M, Takahashi T (1980) A direct oxidative methoxycarbonylation of propyne with carbon monoxide in methanol. Tetrahedron Lett 21:849–850

    Article  CAS  Google Scholar 

  7. Kim DS, Park WJ, Lee CH, Jun CH (2014) Hydroesterification of alkenes with sodium formate and alcohols promoted by cooperative catalysis of Ru3(CO)12 and 2-pyridinemethanol. J Org Chem 79:12191–12199

    Article  CAS  Google Scholar 

  8. Kosswig K (2005) In: Surfactants in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a25_747

  9. Ruiz N, Del Rio I, Jimenez IJJ, Claver C, Camer FJ, Cardin CCJ, Gladiali S (1999) High-branched selectivity in the palladium-catalysed alkoxycarbonylation of styrene in the presence of thiol–thioether atropisomeric ligands. J Mol Catal A Chem 143:171–180

    Article  CAS  Google Scholar 

  10. Fuente VD, Waugh M, Eastham GR, Iggo JA, Castillon S, Claver C (2010) Phosphine ligands in the palladium-catalysed methoxycarbonylation of ethene: insights into the catalytic cycle through an HP NMR spectroscopic study. Chem A Eur J 16:6919–6931

    Article  Google Scholar 

  11. Scott M, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235–251

    Article  CAS  Google Scholar 

  12. Reznik GO, Vishwanath P, Pynn M, Jarrel K (2010) Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1387–1397

    Article  CAS  Google Scholar 

  13. Homer A (1984) Catalytic hydrogenation of esters to alcohols. Org React 8:1–27

    Google Scholar 

  14. Matteoli U, Menchi G, Bianchi M, Piacenti F, Ianelli S, Nardelli M (1995) Structure and catalytic activity of phosphine-substituted ruthenium carbonyl carboxylates. J Organomet Chem 498:177–186

    Article  CAS  Google Scholar 

  15. Van Engelen MC, Teunissen HT, de Vries JG, Elsevier CJ (2003) Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters. J Mol Catal A Chem 206:185–192

    Article  Google Scholar 

  16. Hreczuch W, Trathnigg B, Dziwinski E, Pyzalski K (2001) Direct ethoxylation of a longer-chain aliphatic ester. J Surf Deterg 4:167–173

    Article  CAS  Google Scholar 

  17. Hama I, Okamoto T, Nakamura H (1995) Preparation and properties of ethoxylated fatty methyl ester nonionics. J Am Oil Chem Soc 72:781–784

    Article  CAS  Google Scholar 

  18. Cox MF (1994) Ethylene oxide-derived surfactants. In: Proceedings of the 3rd World Conference on Detergents: Global Perspectives, pp 141–146

  19. Di Serio MD, Tesser R, Russo V, Turco R, Vitiello R, Sun Y, Hreczuch W (2015) Catalysts for the ethoxylation of esters. J Surf Deterg 18:913–918

    Article  Google Scholar 

  20. Hama I, Okamoto T, Nakamura H (1995) Preparation and properties of ethoxylated fatty methyl ester nonionics. J Am Oil Chem Soc 72:781–784

    Article  CAS  Google Scholar 

  21. Cox MF, Weerasooriya U (1997) Methyl ester ethoxylates. J Am Oil Chem Soc 74:847–859

    Article  CAS  Google Scholar 

  22. Itrich NR, Federle TW (2004) Effect of ethoxylate number and alkyl chain length on the pathway and kinetics of linear alcohol ethoxylate biodegradation in activated sludge. Environ Toxicol Chem 23:2790–2798

    Article  Google Scholar 

  23. SIAR (2006) SIDS initial assessment report for long chain alcohols. SIAM 22, Paris, France, pp 18–22

  24. Prats D, Lopez C, Vallejo D, Varo P, Leon VM (2006) Effect of temperature on the biodegradation of linear alkylbenzene sulfonate and alcohol ethoxylate. J Surf Deterg 9:69–75

    Article  CAS  Google Scholar 

  25. Ojwach SO, Guzei IA, Darkwa J (2009) (Pyrazol-1-ylmethyl)pyridine palladium complexes: synthesis, molecular structures, and activation of small molecules. J Organomet Chem 694:1393–1399

    Article  CAS  Google Scholar 

  26. Hallman PS, Stephenson TA, Wilkinson G (1970) Tetrakis(triphenylphosphine)dichloro ruthenium(II) and tris(triphenylphosphine)dichloro ruthenium(II). In: Inorganic synthesis, vol 12. McGraw Hill, New York, pp 237–240

    Google Scholar 

  27. Aguirre PA, Lagos CA, Moya SA, Zuniga C, Vera-Oyarce C, Sola E, Peris G, Bayon JC (2007) Methoxycarbonylation of olefins catalyzed by palladium complexes bearing P,N-donor ligands. J Chem Soc Dalton Trans 5419–5426

  28. Del Rio ID, Ruiz N, Claver C, van der Veen LA, van Leeuwen PWNM (2000) Hydroxycarbonylation of styrene with palladium catalysts. The influence of the mono- and bidentate phosphorus ligand. J Mol Catal A Chem 161:39–48

    Article  Google Scholar 

  29. Frew JJR, Damian K, Van Rensburg H, Slawin AMZ, Tooze RP, Clarke ML (2009) Palladium(II) complexes of new bulky bidentate phosphanes: active and highly regioselective catalysts for the hydroxycarbonylation of styrene. Chem Eur J 15:10504–10513

    Article  CAS  Google Scholar 

  30. Liu Q, Yuan K, Arockiam P-B, Franke R, Doucet H, Jackstell R, Beller M (2015) Regioselective Pd-catalyzed methoxycarbonylation of alkenes using both paraformaldehyde and methanol as CO surrogates. Angew Chem Int Ed 54:4493–4497

    Article  CAS  Google Scholar 

  31. Beller M, Krotz A, Baumann W (2002) Palladium-catalyzed methoxycarbonylation of 1,3-butadiene: catalysis and mechanistic studies. Adv Synth Catal 344:517–524

    Article  CAS  Google Scholar 

  32. Bittler K, Kutepow N, Neubauer D, Reis H (1968) Carbonylation of olefins under mild temperature conditions in the presence of palladium complexes. Angew Chem Int Ed Engl 7:329–335

    Article  CAS  Google Scholar 

  33. Seayad A, Kelkar AA, Toniolo L, Chaudhari RV (2000) Hydroesterification of styrene using an in situ formed Pd(OTs)2(PPh3)2 complex catalyst. J Mol Catal 151:47–59

    Article  CAS  Google Scholar 

  34. Zuniga C, Moya SA, Aguirre P (2009) Methoxycarbonylation of styrene catalyzed by palladium complexes with ferrocene derivatives containing nitrogen and phosphine ligands. Catal Lett 130:373–379

    Article  CAS  Google Scholar 

  35. Rodriguez CJ, Foster DF, Eastham GR, Cole-Hamilton DJ (2004) Highly selective formation of linear esters from terminal and internal alkenes catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)benzene. Chem Commun 1720–1732

  36. Munoz BK, Godard C, Marinetti A, Ruiz A, Benet-Buchholz J, Claver C (2007) Pd-catalysed methoxycarbonylation of vinylarenes using chiral monodentate phosphetanes and phospholane as ligands. Effect of substrate substituents on enantioselectivity. J Chem Soc Dalton Trans 36:5524–5530

    Article  Google Scholar 

  37. Tshabalala TA, Ojwach SO, Akerman MP (2015) Palladium complexes of (benzoimidazol-2-ylmethyl)amine ligands as catalysts for methoxycarbonylation of olefins. J Mol Catal A Chem 406:178–184

    Article  CAS  Google Scholar 

  38. Matteoli U, Bianchi M, Menchi G, Frediani P, Piacenti F (1984) Homogeneous catalytic hydrogenation of dicarboxylic acid esters. J Mol Cat 22:353–362

    Article  CAS  Google Scholar 

  39. Teunissen HT, Elsevier CJ (1997) Ruthenium catalysed hydrogenation of dimethyl oxalate to ethylene glycol. Chem Commun 667

  40. Smulders E, Von Rybinski W, Sung E, Rähse W, Steber J, Wiebel F, Nordskog A (2007) Laundry detergents. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  41. Leach, Bruce, Shannon M, Wharry D (1988) Alkoxylation process using calcium based catalysts; alkoxylated alcohol, calcium compound and organoaluminum compound. US Patent 4,775,653

Download references

Acknowledgments

The authors would like to thank the Department of Science and Technology–National Research Foundation (DST-NRF) Center of Excellence in Catalysis (c*change, South Africa) and University of KwaZulu-Natal for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Ojwach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 702 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.G., Tshabalala, T.A. & Ojwach, S.O. Metal-Catalyzed Alkene Functionalization Reactions Towards Production of Detergent and Surfactant Feedstocks. J Surfact Deterg 20, 75–81 (2017). https://doi.org/10.1007/s11743-016-1886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1886-8

Keywords

Navigation