Skip to main content
Log in

Critical Behavior and Ensuing Phase Separations in Paraben-Solubilized Micellar Solutions of Ionic Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Aqueous solutions of cetyltrimethylammonium bromide (CTAB) show micellar growth in the presence of various organic and inorganic additives. The simultaneous presence of some of these additives exhibit synergistic effects on micellar growth in this system due to their diverse nature of influences on the critical packing parameter of CTAB micelles. In this manuscript, we report dynamic light scattering, small-angle neutron scattering and rheological studies on influences of the widely used preservative butyl paraben and NaCl on the growth and interaction of CTAB micelles. These additives show synergism in micellar growth and induce micellar attraction-driven phase separations of both upper consolute temperature and lower consolute temperature regimes in aqueous solutions of CTAB. Quite interestingly, such micellar attraction-driven phase separations are also induced in aqueous systems of other cationic and anionic surfactants in the simultaneous presence of a hydrophobic substance and NaCl. These systematic observations of micellar attraction-driven phase separation are the first of this kind in aqueous systems of ionic surfactants. The results also suggest that the use of parabens as preservatives in some ionic surfactantbased formulations can also help in tuning their rheological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cates M, Candau S (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  2. Khatory A, Lequeux F, Kern F, Candau S (1993) Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content. Langmuir 9:1456–1464

    Article  CAS  Google Scholar 

  3. Hassan P, Valaulikar B, Manohar C, Kern F, Bourdieu L, Candau S (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12:4350–4357

    Article  CAS  Google Scholar 

  4. Aswal V, Goyal P, Thiyagarajan P (1998) Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions. J Phys Chem B 102:2469–2473

    Article  CAS  Google Scholar 

  5. Haldar J, Kondaiah P, Bhattacharya S (2005) Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. J Med Chem 48:3823–3831

    Article  CAS  Google Scholar 

  6. Simoes M, Pereira M, Machado I, Simões LC, Vieira M (2006) Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens. J Ind Microbiol Biotechnol 33:741–749

    Article  CAS  Google Scholar 

  7. Klemperer R, Ismail NT, Brown M (1980) Effect of R-plasmid RP1 and nutrient depletion on the resistance of Escherichia coli to cetrimide, chlorhexidine and phenol. J Appl Bacteriol 48:349–357

    Article  CAS  Google Scholar 

  8. Barnes JM (1942) CTAB: a new disinfectant and cleaning agent. Lancet 239:531–532

    Article  Google Scholar 

  9. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708

    Article  CAS  Google Scholar 

  10. Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652–5653

    Article  CAS  Google Scholar 

  11. Free ML (2002) Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corros Sci 44:2865–2870

    Article  CAS  Google Scholar 

  12. Zhu J, Zhou Y-H, Gao C-Q (1998) Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution. J Power Sources 72:231–235

    Article  CAS  Google Scholar 

  13. Kuperkar K, Abezgauz L, Danino D, Verma G, Hassan PA, Aswal VK, Varade D, Bahadur P (2008) Viscoelastic micellar water/CTAB/NaNO3 solutions: rheology, SANS and cryo-TEM analysis. J Colloid Interface Sci 323:403–409

    Article  CAS  Google Scholar 

  14. Candau S, Hirsch E, Zana R, Delsanti M (1989) Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium bromide in the presence of potassium bromide. Langmuir 5:1225–1229

    Article  CAS  Google Scholar 

  15. Cardiel JJ, Zhao Y, De La Iglesia P, Pozzo LD, Shen AQ (2014) Turning up the heat on wormlike micelles with a hydrotopic salt in microfluidics. Soft Matter 10:9300–9312

    Article  CAS  Google Scholar 

  16. Shikata T, Dahman SJ, Pearson DS (1994) Rheo-optical behavior of wormlike micelles. Langmuir 10:3470–3476

    Article  CAS  Google Scholar 

  17. AminS Kermis TW, van Zanten RM, Dees SJ, van Zanten JH (2001) Concentration fluctuations in CTAB/NaSal solutions. Langmuir 17:8055–8061

    Article  Google Scholar 

  18. Nemoto N, Kuwahara M, Yao M-L, Osaki K (1995) Dynamic light scattering of CTAB/NaSal threadlike micelles in a semidilute regime. 3. Dynamic coupling between concentration fluctuation and stress. Langmuir 11:30–36

    Article  CAS  Google Scholar 

  19. Brown W, Johansson K, Almgren M (1989) Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalenesulfonate solutions studied by static and dynamic light scattering. J Phys Chem 93:5888–5894

    Article  Google Scholar 

  20. Prasad CD, Singh H, Goyal P, Rao KS (1993) Structural transitions of CTAB micelles in the presence of n-octylamine: a small-angle neutron scattering study. J Colloid Interface Sci 155:415–419

    Article  CAS  Google Scholar 

  21. Aswal V, Goyal P (2000) Counterions in the growth of ionic micelles in aqueous electrolyte solutions: a small-angle neutron scattering study. Phys Rev E 61:2947–2953

    Article  CAS  Google Scholar 

  22. Das NC, Cao H, Kaiser H, Warren GT, Gladden JR, Sokol PE (2012) Shape and size of highly concentrated micelles in CTAB/NaSal solutions by small-angle neutron scattering (SANS). Langmuir 28:11962–11968

    Article  CAS  Google Scholar 

  23. Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci 7:276–281

    Article  CAS  Google Scholar 

  24. Ezrahi S, Tuval E, Aserin A (2006) Properties, main applications and perspectives of worm micelles. Adv Colloid Interface Sci 128–130:77–102

    Article  Google Scholar 

  25. Golden R, Gandy J, Vollmer G (2005) A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol 35:435–458

    Article  CAS  Google Scholar 

  26. Soni M, Carabin I, Burdock G (2005) Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol 43:985–1015

    Article  CAS  Google Scholar 

  27. Darbre PD, Harvey PW (2008) Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol 28:561–578

    Article  CAS  Google Scholar 

  28. European Economic Community (ECC) Instruction No. 93/95 (1993) Off J Eur Commun Bruss 32–37

  29. Khimani M, Ganguly R, Aswal V, Nath S, Bahadur P (2012) Solubilization of parabens in aqueous Pluronic solutions: investigating the micellar growth and interaction as a function of paraben composition. J Phys Chem B 116:14943–14950

    Article  CAS  Google Scholar 

  30. Schmolka IR (1977) A review of block polymer surfactants. J Am Oil Chem Soc 54:110–116

    Article  CAS  Google Scholar 

  31. Teo B, Basri M, Zakaria M, Salleh A, Rahman R, Rahman M (2010) A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals. J Nanobiotechnol 8:1–11

    Article  Google Scholar 

  32. Huang JQ, Hu CC, Chiu TC (2013) Determination of seven preservatives in cosmetic productsby micellar electrokinetic chromatography. Int J Cosmet Sci 35:346–353

    Article  CAS  Google Scholar 

  33. Aswal V, Goyal P (2000) Small-angle neutron scattering diffractometer at Dhruva reactor. Curr Sci 79:947–953

    Google Scholar 

  34. Hayter JB, Penfold J (1983) Determination of micelle structure and charge by neutron small-angle scattering. Colloid Polym Sci 261:1022–1030

    Article  CAS  Google Scholar 

  35. Kaler EW (1988) Small-angle scattering from colloidal dispersions. J Appl Crystallogr 21:729–736

    Article  CAS  Google Scholar 

  36. Hayter JB, Penfold J (1981) An analytic structure factor for macroion solutions. Mol Phys 42:109–118

    Article  CAS  Google Scholar 

  37. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210

    Article  CAS  Google Scholar 

  38. Pedersen JS, Riekel C (1991) Resolution function and flux at the sample for small-angle X- scattering calculated in position-angle-wavelength space. J Appl Crystallogr 24:893–909

    Article  Google Scholar 

  39. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  40. Agarwal V, Singh M, McPherson G, John V, Bose A (2006) Microstructure evolution in aqueous solutions of cetyl trimethylammonium bromide (CTAB) and phenol derivatives. Colloids Surf A 281:246–253

    Article  CAS  Google Scholar 

  41. Varade D, Rodríguez-Abreu C, Delgado JG, Aramaki K (2007) Viscoelasticity and mass transfer in phenol–CTAB aqueous systems. Colloid Polym Sci 285:1741–1747

    Article  CAS  Google Scholar 

  42. Sreejith L, Parathakkat S, Nair SM, Kumar S, Varma G, Hassan PA, Talmon Y (2010) Octanol-triggered self-assemblies of the CTAB/KBr system: a microstructural study. J Chem B 115:464–470

    Article  Google Scholar 

  43. Zhang W-C, Li G-Z, Shen Q, Mu J-H (2000) Effect of benzyl alcohol on the rheological properties of CTAB/KBr micellar systems. Colloids Surf A 170:59–64

    Article  CAS  Google Scholar 

  44. Mata J, Aswal V, Hassan P, Bahadur P (2006) A phenol-induced structural transition in aqueous cetyltrimethylammonium bromide solution. J Colloid Interface Sci 299:910–915

    Article  CAS  Google Scholar 

  45. Oda R, Panizza P, Schmutz M, Lequeux F (1997) Direct evidence of the shear-induced structure of wormlike micelles: gemini surfactant 12-2-12. Langmuir 13:6407–6412

    Article  CAS  Google Scholar 

  46. Liu C-H, Pine D (1996) Shear-induced gelation and fracture in micellar solutions. Phys Rev Lett 77:2121

    Article  CAS  Google Scholar 

  47. Gamez-Corrales R, Berret J-F, Walker L, Oberdisse J (1999) Shear-thickening dilute surfactant solutions: equilibrium structure as studied by small-angle neutron scattering. Langmuir 15:6755–6763

    Article  CAS  Google Scholar 

  48. Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26:532–542

    Article  CAS  Google Scholar 

  49. Vestergaard Jensen G, Lund R, Gummel J, Narayanan T, Pedersen JS (2014) Monitoring the transition from spherical to polymer-like surfactant micelles using small-angle X-ray scattering. Angew Chem Int Ed 53:11524–11528

    Article  Google Scholar 

  50. Goyal P, Menon S, Dasannacharya B, Rajagopalan V (1993) Role of van der Waals forces on small-angle neutron scattering from ionic micellar solutions. Chem Phys Lett 211:559–563

    Article  CAS  Google Scholar 

  51. Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem B 94:371–375

    Article  CAS  Google Scholar 

  52. Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  CAS  Google Scholar 

  53. Granek R, Cates ME (1992) Stress relaxation in living polymers: results from a Poisson renewal model. J Chem Phys 96:4758–4767

    Article  CAS  Google Scholar 

  54. Koshy P, Verma G, Aswal V, Venkatesh M, Hassan P (2011) Viscoelastic fluids originated from enhanced solubility of sodium laurate in cetyl trimethyl ammonium bromide micelles through cooperative self-assembly. J Phys Chem B 114:10462–10470

    Article  Google Scholar 

  55. Appell J, Porte G (1983) Cloud points in ionic surfactant solutions. J Phys Lett 44:689–695

    Article  Google Scholar 

  56. Zulauf M, Rosenbusch J (1983) Micelle clusters of octylhydroxyoligo (oxyethylenes). J Phys Chem 87:856–862

    Article  CAS  Google Scholar 

  57. Molina-Bolivar J, Aguiar J, Ruiz CC (2002) Growth and hydration of Triton X-100 micelles in monovalent alkali salts: a light scattering study. J Phys Chem B 106:870–877

    Article  CAS  Google Scholar 

  58. Ganguly R, Sharma J, Choudhury N (2012) Phase separation in the TODGA reverse micellar solutions in dodecane: identifying an upper consolute temperature and an associated critical behavior. Soft Matter 8:1795–1800

    Article  CAS  Google Scholar 

  59. Ganguly R (2014) Phase separations in aerosol OT reverse micellar solutions in dodecane: a curious case of polar domain composition driven transition from lower consolute temperature (LCT) to upper consolute temperature (UCT) regime. J Colloid Interface Sci 430:234–238

    Article  CAS  Google Scholar 

  60. Ngai K (1996) Dynamics of semidilute solutions of polymers and associating polymers. Adv Colloid Interface Sci 64:1–43

    Article  CAS  Google Scholar 

  61. Raghavan SR, Edlund H, Kaler EW (2002) Cloud-point phenomena in wormlike micellar systems containing cationic surfactant and salt. Langmuir 18:1056–1064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Ganguly.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, U., Parekh, P., Ray, D. et al. Critical Behavior and Ensuing Phase Separations in Paraben-Solubilized Micellar Solutions of Ionic Surfactants. J Surfact Deterg 19, 1043–1052 (2016). https://doi.org/10.1007/s11743-016-1856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1856-1

Keywords

Navigation