Skip to main content
Log in

Phase Behavior of Ascorbyl Palmitate Coagels Loaded with Oligonucleotides as a New Carrier for Vaccine Adjuvants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In this work, the phase behavior variations of an ascorbyl palmitate (Asc16) system in aqueous solution were analyzed when immunologically active hydrophilic compounds (CpG and OVA) were introduced. This study was carried out through optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC) at different temperatures and over a broad range of concentrations. The combination of both techniques allowed the determination of a complete phase diagram which was compared with those built for Asc16-water system and it was demonstrated that fixed concentrations of hydrophilic compounds (300 and 24 µg/g for CpG-ODN and OVA respectively) generate two lamellar liquid crystals, a cubic liquid crystal phase, and also other aggregates. However, no changes were observed in the phase diagram in terms of formation of new mesophases. The aqueous phase behavior was also studied as a function of surfactant and temperature. DSC and Fourier transform infrared spectroscopy (FT-IR) measurements show differences in the free water and mainly in the secondary hydration layer, which confirm that the studied compounds are situated in the aqueous domain. The construction and analysis of Asc16 phase diagrams with a fixed concentration of CpG-ODN/OVA allows the comprehension of Asc16 phase behavior and could be easily adapted to other concentrations. Moreover, these findings could be extrapolated to other hydrophilic substances in aqueous solution introduced in liquid crystal phases since they follow a similar behavior as those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palma S, Lo Nostro P, Manzo R, Allemandi D (2002) Evaluation of the surfactant properties of ascorbyl palmitate sodium salt. Eur J Pharm Sci 16:37–43

    Article  CAS  Google Scholar 

  2. Palma S, Manzo R, Allemandi D, Fratoni L, Lo Nostro P (2002) Solubilization of hydrophobic drugs in octanoyl-6-O-ascorbic acid micellar dispersions. Langmuir 18:1810–1816

    Article  Google Scholar 

  3. Benedini L, Schulz E, Messina P, Palma S, Allemandi D, Schulz P (2011) The ascorbyl palmitate-water system: phase diagram and state of water. Colloids Surf A Physicochem Eng Aspects 375:178–185

    Article  CAS  Google Scholar 

  4. Palma S, Ullio Gamboa G, Allemandi D (2013) Vitamin C based nanostructures: potential utility in ocular and transdermal therapy. J Biomater Tiss Eng 3:61–69

    Article  CAS  Google Scholar 

  5. Ambrosi M, Lo Nostro P, Fratoni L, Dei L, Ninham BW, Palma S, Manzo R, Allemandi D, Baglioni P (2004) Water of hydration in coagels. Phys Chem Chem Phys 6:1401–1407

    Article  CAS  Google Scholar 

  6. Palma S, Manzo R, Allemandi D, Fratoni L, Lo Nostro P (2003) Drugs solubilization in ascorbyl-decanoate micellar solutions. Colloids Surf A Physicochem Eng Aspects 212:163–173

    Article  CAS  Google Scholar 

  7. Capuzzi G, Lo Nostro P, Kulkarni K, Fernandez J, Vincieri F (1996) Interactions of 6-O-stearoylascorbic acid and vitamin K1 in mixed Langmuir films at the gas–water interface. Langmuir 12:5413–5418

    Article  CAS  Google Scholar 

  8. Capuzzi G, Lo Nostro P, Kulkarni K, Fernandez J (1996) Mixtures of stearoyl-6-O-ascorbic acid and -tocopherol: a monolayer study at the gas/water interface. Langmuir 12:3957–3963

    Article  CAS  Google Scholar 

  9. Capuzzi G, Kulkarni G, Fernandez J, Vincieri J, Lo Nostro P (1997) Mixture of ascorbyl-stearate and vitamin D3: a monolayer study at the gas–water interface. J Colloid Interface Sci 186:271–279

    Article  CAS  Google Scholar 

  10. Tartara I, Quinteros D, Saino V, Allemandi D, Palma S (2012) Improvement of acetazolamide ocular permeation using ascorbyl laurate nanostrucures as drug delivery systems. J Ocul Pharmacol Ther 28:102–109

    Article  CAS  Google Scholar 

  11. Saino V, Monti D, Burgalassi S, Tampucci S, Palma S, Allemandi D, Chetoni P (2010) Optimization of skin permeation and distribution of ibuprofen by using nanostructures (coagels) based on alkyl vitamin C derivatives. Eur J Pharm Biopharm 76:443–449

    Article  CAS  Google Scholar 

  12. Palma S, Maletto B, Lo Nostro P, Manzo R, Pistoresi-Palencia M, Allemandi D (2006) Potential use of ascorbic acid–based surfactants as skin penetration enhancers. Drug Dev Ind Pharm 32:821–827

    Article  CAS  Google Scholar 

  13. Rasia M, Spengler M, Palma S, Manzo R, Lo Nostro P, Allemandi D (2011) Effect of ascorbic acid based amphiphiles on human erythrocytes membrane. Clin Hemorheol Microcirc 36:133–140

    Google Scholar 

  14. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12:509–517

    Article  CAS  Google Scholar 

  15. Hanagata N (2012) Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomed 7:2181–2195

    Article  CAS  Google Scholar 

  16. Navarro G, Maiwald G, Haase R, Rogach A, Wagner E, Tros de Ilarduya C, Ogris M (2010) Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. J Controll Rel 146:99–105

    Article  CAS  Google Scholar 

  17. Gramzinski R, Doolan D, Sedegah M, Davis H, Krieg A, Hoffman S (2001) Interleukin-12- and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect Immun 69:1643–1649

    Article  CAS  Google Scholar 

  18. Rees D, Gates A, Green M, Eastaugh L, Lukaszewski R, Griffin K, Krieg AM, Titball RW (2005) CpG-DNA protects against a lethal orthopoxvirus infection in a murine model. Antivir Res 65:87–95

    Article  CAS  Google Scholar 

  19. Mutwiri G, van DrunenLittel-van den Hurk S, Babiuk L (2009) Safety of CpG oligodeoxynucleotides in veterinary species. Adv Drug Deliv Rev 61:226–232

  20. Krieg A (2006) Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    Article  CAS  Google Scholar 

  21. Mutwiri G, Nichani A, Babiuk S, Babiuk L (2004) Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release 97:1–17

    Article  CAS  Google Scholar 

  22. Mueller M, Reichardt W, Koerner J, Groettrup M (2012) Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 162:159–166

    Article  CAS  Google Scholar 

  23. Kwong B, Liu H, Irvine DJ (2011) Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 32:5134–5147

    Article  CAS  Google Scholar 

  24. Klier J, Fuchs S, May A, Schillinger U, Plank C, Winter G, Gehlen H, Coester C (2012) A nebulized gelatin nanoparticle-based CpG formulation is effective in immunotherapy of allergic horses. Pharm Res 29:1650–1657

    Article  CAS  Google Scholar 

  25. Zhou S, Hashida Y, Kawakami S, Mihara J, Umeyama T, Imahori H, Murakami T, Yamashita F, Hashida M (2014) Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy. Int J Pharm 471:214–223

    Article  CAS  Google Scholar 

  26. Choksakulnimitr S, Masuda S, Tokuda H, Takakura Y, Hashida M (1995) In vitro cytotoxicity of macromolecules in different cell-culture systems. J Control Release 34:233–241

    Article  CAS  Google Scholar 

  27. Rattanakiat S, Nishikawa SM, Funabashi H, Luo D, Takakura Y (2009) The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30:5701–5706

    Article  CAS  Google Scholar 

  28. Klinman D, Barnhart K, Conover J (1999) CpG motifs as immune adjuvants. Vaccine. 17:19–25

    Article  CAS  Google Scholar 

  29. Klinman D (2006) Adjuvant activity of CpG oligodeoxynucleotides. Int Rev Immunol 25:135–154

    Article  CAS  Google Scholar 

  30. Xie H, Gursel I, Ivins B, Singh M, O’Hagan D, Ulmer J, Klindman D (2005) CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect Immun 73:828–833

    Article  CAS  Google Scholar 

  31. Erikci E, Gursel M, Gursel I (2011) Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials 32:1715–1723

    Article  CAS  Google Scholar 

  32. Fischer S, Schlosser E, Mueller M, Csaba N, Merkle HP, Groettrup M, Gander B (2009) Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target 17(8):652–661

    Article  CAS  Google Scholar 

  33. McCluskie MJ, Weeratna RD, Evans DM, Makinen S, Drane D, Davis HL (2013) CpG ODN and ISCOMATRIX adjuvant: a synergistic adjuvant combination inducing strong T-cell IFN-gamma responses. Biomed Res Int 2013:636847

    Article  Google Scholar 

  34. Sánchez Vallecillo M, Ullio Gamboa G, Palma S, Harman M, Chiodetti M, Morón G, Pstoresi C, Maletto B (2014) Adjuvant activity of CpG-ODN formulated as a liquid crystal. Biomaterials 35:2529–2542

    Article  Google Scholar 

  35. Schulz PC (2006) Water structure at surfactant microstructures and biological interfaces. In: Somasundaran P, Hubbard A (eds) Encyclopedia of surface and colloid science, New York, pp 6562–6577

  36. Maletto B, Ropolo A, Moron V, Pistoresi-Palencia MC (2002) CpG-DNA stimulates cellular and humoral immunity and promotes Th1 differentiation in aged BALB/c mice. JLB 72:447–454

    CAS  Google Scholar 

  37. Maletto B, Ropolo A, Liscovsky M, Alignani D, Glocker M, Pistoresi-Palencia M (2005) CpG oligodeoxinucleotides functions as an effective adjuvant in aged BALB/c mice. Clin Immunol 117:251–261

    Article  CAS  Google Scholar 

  38. Connors K, Amidon G, Stella I (1986) Chemical stability of pharmaceuticals, Wiley-Interscience, New York

  39. Rowe RC, Sheskey PJ, Cook W, Fenton ME (2012) Handbook of pharmaceutical excipients. American Pharmaceutical Association, Washington DC

  40. Lo Nostro P, Ninham BW, Fratoni L, Palma S, Manzo RH, Allemandi D, Baglioni P (2003) Effect of water structure on the formation of coagels from ascorbylalkanoates. Langmuir 19:3222–3228

    Article  CAS  Google Scholar 

  41. Schulz PC, Soltero-Martínez JFA, Puig JE (2001) DSC analysis of surfactant-based microstructures. In: Garti N (ed) Thermal behavior of dispersed systems. New York, pp 121–181

  42. Herrera-Gómez A, Velázquez-Cruz G, Martín-Polo M (2001) Analysis of the water bound to a polymer matrix by infrared spectroscopy. J Appl Phys 89:5431–5437

    Article  Google Scholar 

  43. Zhou G, Li G, Chen W (2002) Fourier transform infrared investigation on water states and the conformations of aerosol-OT in reverse microemulsions. Langmuir 18:4566–4571

    Article  CAS  Google Scholar 

  44. Caboi F, Amico G, Pitzalis P, Monduzzi M, Nylander T, Larsson K (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behaviour. Chem Phys Lipids 109:47–62

    Article  CAS  Google Scholar 

  45. Murgia S, Caboi F, Monduzzi M (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein:water system II—13C NMR relaxation study. Chem Phys Lipids 110:11–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dra. Olga Pieroni, (Organic Chemistry Laboratory-Chemistry department from UNS.INQUISUR-CONICET Bahia Blanca, Argentina) for assistance with the IR analysis. G. Ullio Gamboa thanks the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for a research fellowship. This work was supported by the grants SECyT-UNC. Res. 162/12 and PID CONICET No. 11220090100673 and a grant of the Universidad Nacional del Sur. LAB, and DAA are researchers of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Allemandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Gabriela V. Ullio Gamboa and Luciano A. Benedini contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullio Gamboa, G.V., Benedini, L.A., Schulz, P.C. et al. Phase Behavior of Ascorbyl Palmitate Coagels Loaded with Oligonucleotides as a New Carrier for Vaccine Adjuvants. J Surfact Deterg 19, 747–757 (2016). https://doi.org/10.1007/s11743-016-1816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1816-9

Keywords

Navigation