Skip to main content
Log in

Solubilization Behavior of Phorbol Esters from Jatropha Oil in Surfactant Micellar Solutions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Phorbol esters (PEs) are important toxic compounds found in Jatropha curcas oil and pressed seeds. These compounds are tumor promoters; thus, their removal prior to further utilization of the pressed seed is important. This work aimed to investigate the solubilization behavior of PEs and Jatropha oil in nonionic [effect of the ethylene oxide number (EON), carbon-chain length and temperature] and anionic (NaCl addition) surfactant systems. The results reveal that an increase in the EON of the nonionic surfactant molecules, rather than an increase in the carbon-chain length, enhances PE solubilization. The hydrophile-lipophile balance (HLB) value was correlated with PE solubilization for nonionic surfactant solutions. The solubilization of PEs decreased slightly with increasing temperature, in contrast to solubilization of the oil. Moreover, the mole fraction of PE solubilized in the micelle decreased with increasing electrolyte concentration in anionic surfactant solutions. The solubilization behavior of PEs in both nonionic and anionic solutions indicates that PE acts more like a polar compound than a nonpolar compound. In addition, the PEs in nonionic micelles are likely located in the palisade region (i.e., between the head group and the first few carbon atoms of the tail), whereas those in anionic micelles are likely near the outer core of the head group. This finding suggests that a nonionic surfactant with a higher EON has a greater potential to extract PE from Jatropha seeds. If an anionic surfactant is combined as co-surfactant, a small amount of electrolyte should be added to increase PE solubilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jongschaap REE, Corré WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L. Plant Research International, Wageningen

    Google Scholar 

  2. Heller J (1996) Physic nut. Jatropha curcas L. Institute of Plant Genetics and Crop Plant Research International Plant Genetic Resources Institute, Gatersleben

    Google Scholar 

  3. Adolf W, Opferkuch HJ, Hecker E (1984) Irritant phorbol derivatives from four Jatropha species. Phytochem 23:129–132

    Article  CAS  Google Scholar 

  4. Goel G, Makkar HP, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26:279–288

    Article  CAS  Google Scholar 

  5. Hirota M, Suttajit M, Suguri H, Endo Y, Shudo K et al (1988) A new tumor promoter from the seed oil of Jatropha curcas L., an intramolecular diester of 12-deoxy-16-hydroxyphorbol. Cancer Res 48:5800–5804

    CAS  Google Scholar 

  6. Devappa RK, Rajesh SK, Kumar V, Makkar HPS, Becker K (2012) Activities of Jatropha curcas phorbol esters in various bioassays. Ecotoxicol Environ Saf 78:57–62

    Article  CAS  Google Scholar 

  7. Li C-Y, Devappa RK, Liu J-X, Lv J-M, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625

    Article  CAS  Google Scholar 

  8. Aregheore EM, Becker K, Makkar HPS (2003) Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. S Pac J Nat Appl Sci 21:51–56

    Google Scholar 

  9. Katole S, Saha SK, Sastry VRB, Lade MH, Prakash B (2011) Intake, blood metabolites and hormonal profile in sheep fed processed Jatropha (Jatropha curcas) meal. Anim Feed Sci Technol 170:21–26

    Article  CAS  Google Scholar 

  10. Devappa R, Makkar HS, Becker K (2011) Jatropha diterpenes: a review. J Am Oil Chem Soc 88:301–322

    Article  CAS  Google Scholar 

  11. Phasukarratchai N, Tontayakom V, Tongcumpou C (2012) Reduction of phorbol esters in Jatropha curcas L. pressed meal by surfactant solutions extraction. Biomass Bioenergy 45:48–56

    Article  CAS  Google Scholar 

  12. Devappa RK, Makkar HPS, Becker K (2010) Optimization of conditions for the extraction of phorbol esters from Jatropha oil. Biomass Bioenerg 34:1125–1133

    Article  CAS  Google Scholar 

  13. Martínez-Herrera J, Siddhuraju P, Francis G, Dávila-Ortíz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89

    Article  Google Scholar 

  14. Haas W, Mittelbach M (2000) Detoxification experiments with the seed oil from Jatropha curcas L. Ind Crops Prod 12:111–118

    Article  CAS  Google Scholar 

  15. Guedes RE, Cruz FdA, Lima MCd, Sant’Ana LDO, Castro RN, Mendes MF (2014) Detoxification of Jatropha curcas seed cake using chemical treatment: analysis with a central composite rotatable design. Ind Crops Prod 52:537–543

    Article  CAS  Google Scholar 

  16. Rakshit KD, Darukeshwara J, Rathina Raj K, Narasimhamurthy K, Saibaba P, Bhagya S (2008) Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem Toxicol 46:3621–3625

    Article  CAS  Google Scholar 

  17. Nokkaew R, Punsuvon V, Vaithanomsat P (2008) Eliminated phorbol esters in seed oil and press cake of Jatropha curcas L. In: Proceedings of pure and applied chemistry international conference 30th Jan–1st Feb 2008. Sofitel Centara Grand Hotel Bangkok: Kasetsart University, pp 202–206

  18. Devappa R, Maes J, Makkar H, Greyt W, Becker K (2010) Quality of biodiesel prepared from phorbol ester extracted Jatropha curcas oil. J Am Oil Chem Soc 87:697–704

    Article  CAS  Google Scholar 

  19. Rug M, Ruppel A (2000) Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop Med Int Health 5:423–430

    Article  CAS  Google Scholar 

  20. Verma M, Pradhan S, Sharma S, Naik SN, Prasad R (2011) Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus). Int Biodeterior Biodegradation 65:877–882

    Article  CAS  Google Scholar 

  21. Devappa RK, Angulo-Escalante MA, Makkar HPS, Becker K (2012) Potential of using phorbol esters as an insecticide against Spodoptera frugiperda. Ind Crops Prod 38:50–53

    Article  CAS  Google Scholar 

  22. Chang RL, Han ZT (2000) USA Patent No. US6063814 A

  23. Jones RJ, Sharkis SJ, Miller CB, Rowinsky EK, Burke PJ, May WS (1990) Bryostatin 1, a unique biologic response modifier: anti-leukemic activity in vitro. Blood 75:1319–1323

    CAS  Google Scholar 

  24. Mihalik R, Farkas G, Kopper L, Benczur M, Farago A (1996) Possible involvement of protein kinase C-epsilon in phorbol ester-induced growth inhibition of human lymphoblastic cells. Int J Biochem Cell Biol 28:925–933

    Article  CAS  Google Scholar 

  25. Scher W, Eto Y, Ejima D, Den T, Svet-Moldavsky IA (1990) Phorbol ester-treated human acute myeloid leukemia cells secrete G-CSF, GM-CSF and erythroid differentiation factor into serum-free media in primary culture. BBA Mol Cell Res 1055:278–286

    CAS  Google Scholar 

  26. Makkar HPS, Francis G, Becker K (2008) Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88:1542–1548

    Article  CAS  Google Scholar 

  27. Ribeiro BD, Barreto DW, Coelho MAZ (2015) Use of micellar extraction and cloud point preconcentration for valorization of saponins from sisal (Agave sisalana) waste. Food Bioprod Process 94:601–609

    Article  CAS  Google Scholar 

  28. Ribeiro B, Barreto D, Coelho M (2014) Recovery of saponins from Jua (Ziziphus joazeiro) by micellar extraction and cloud Point preconcentration. J Surfactants Deterg 17:553–561

    Article  CAS  Google Scholar 

  29. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, New Jersey

    Book  Google Scholar 

  30. Jafvert CT, Patricia LVH, Heath JK (1994) Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res 28:1009–1017

    Article  CAS  Google Scholar 

  31. Masrat R, Maswal M, Dar AA (2013) Competitive solubilization of naphthalene and pyrene in various micellar systems. J Hazard Mater 244–245:662–670

    Article  Google Scholar 

  32. Takeuchi E, Matsuoka K, Ishii S, Ishikawa S, Honda C, Endo K (2014) Solubilization of polycyclic aromatic hydrocarbons in C16E7 nonionic surfactant solutions. Colloid Surf A Physicochem Eng Asp 441:133–139

    Article  CAS  Google Scholar 

  33. Xiarchos I, Doulia D (2006) Effect of nonionic surfactants on the solubilization of alachlor. J Hazard Mater 136:882–888

    Article  CAS  Google Scholar 

  34. Muherei MA, Junin R (2008) Mixing effect of anionic and nonionic surfactants on micellization, adsorption and partitioning of nonionic surfactant. Mod Appl Sci 2:3–12

    Article  CAS  Google Scholar 

  35. Guo H, Liu Z, Yang S, Sun C (2009) The feasibility of enhanced soil washing of p-nitrochlorobenzene (pNCB) with SDBS/Tween80 mixed surfactants. J Hazard Mater 170:1236–1241

    Article  CAS  Google Scholar 

  36. Shi Z, Chen J, Yin X (2013) Effect of anionic–nonionic-mixed surfactant micelles on solubilization of PAHs. J Air Waste Manag Assoc 63:694–701

    Article  CAS  Google Scholar 

  37. Zhou W, Zhu L (2004) Solubilization of pyrene by anionic–nonionic mixed surfactants. J Hazard Mater 109:213–220

    Article  CAS  Google Scholar 

  38. Mu’azu K, Mohammed-Dabo IA, Waziri SM, Ahmed AS, Bugaje IM, Ahmad AS (2013) Development of a mathematical model for the esterification of Jatropha curcas seed oil. J Pet Technol Altern Fuel 4:44–52

    Google Scholar 

  39. Charoensaeng A, Sabatini D, Khaodhiar S (2009) Solubilization and adsolubilization of polar and nonpolar organic solutes by linker molecules and extended surfactants. J Surfactants Deterg 12:209–217

    Article  CAS  Google Scholar 

  40. Alam M, Matsumoto Y, Aramaki K (2014) Effects of surfactant hydrophilicity on the oil solubilization and rheological behavior of a nonionic hexagonal phase. J Surfactants Deterg 17:19–25

    Article  CAS  Google Scholar 

  41. Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution. Wiley, England

    Google Scholar 

  42. Damrongsiri S, Tongcumpou C, Weschayanwiwat P, Sabatini DA (2010) Solubilization of dibutyltin dichloride with surfactant solutions in single and mixed oil systems. J Hazard Mater 181:1109–1114

    Article  CAS  Google Scholar 

  43. Ranganathan R, Peric M, Medina R, Garcia U, Bales BL, Almgren M (2001) Size, hydration, and shape of SDS/heptane micelles investigated by time-resolved fluorescence quenching and electron spin resonance. Langmuir 17:6765–6770

    Article  CAS  Google Scholar 

  44. Kandori K, McGreevy RJ, Schechter RS (1989) Solubilization of phenol in polyethoxylated nonionic micelles. J Colloid Interface Sci 132:395–402

    Article  CAS  Google Scholar 

  45. Parekh P, Singh K, Marangoni DG, Aswal VK, Bahadur P (2012) Solubilization and location of phenol and benzene in a nonlinear amphiphilic EO–PO block copolymer micelles: 1H NMR and SANS studies. Colloid Surf A Physicochem Eng Asp 400:1–9

    Article  CAS  Google Scholar 

  46. Luning Prak DJ, Jahraus WI, Sims JM, MacArthur AHR (2011) An 1H NMR investigation into the loci of solubilization of 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene in nonionic surfactant micelles. Colloid Surf A Physicochem Eng Asp 375:12–22

    Article  CAS  Google Scholar 

  47. Bernardez LA (2008) Investigation on the locus of solubilization of polycyclic aromatic hydrocarbons in non-ionic surfactant micelles with 1H NMR spectroscopy. Colloid Surf A Physicochem Eng Asp 324:71–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express gratitude to the Graduate School of Chulalongkorn University for the Chulalongkorn University Graduate Scholarship to commemorate the 72nd Anniversary of His Majesty King Bhumibol Adulyadej and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund). We would also like to thank the Center of Excellence on Hazardous Substance Management (HSM) for supporting the scholarship and providing research funding during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantra Tongcumpou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phasukarratchai, N., Damrongsiri, S. & Tongcumpou, C. Solubilization Behavior of Phorbol Esters from Jatropha Oil in Surfactant Micellar Solutions. J Surfact Deterg 19, 29–37 (2016). https://doi.org/10.1007/s11743-015-1758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1758-7

Keywords

Navigation