Skip to main content
Log in

RETRACTED ARTICLE: Influence of the Disk Diameter and Baffle Position on the Performance of Generated Colloidal Gas Aphrons

  • Original Article
  • Published:
Journal of Surfactants and Detergents

This article was retracted on 07 July 2016

Abstract

Aphrons are surfactant-stabilized microbubbles with thick soapy shells. Colloidal gas aphrons (CGA) with an average diameter of 50 μm have some unique properties: a high interfacial area due to their small size, a thick soapy shell and, above all, high stability compared to conventional foams. Various factors that can influence the performance of CGA dispersion, such as the type and concentration of surfactant, mixing time and processing parameters, have already been extensively studied. However, although CGA applications in various fields continue to advance, the influence of the disk diameter and baffle position of the aphron generator on the performance of CGAs has not been well studied. In this experimental work, the influences of the spinning disk diameter and baffle position inside the aphron generator have been investigated. Analyzing the drainage curve of various experimental runs revealed that the disk diameter and baffle position might have a positive impact on the stability of CGA dispersion particularly when the generation time or surfactant concentration is low. The experimental findings have been supported by other techniques such as half-life time and a new stability index, T 0.1, the time elapsed when the drained liquid from CGA dispersion reaches ten percent of its final height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sebba F (1987) Foams and biliquid foams–aphrons. Wiley, New York

    Google Scholar 

  2. Moshkelani M, Amiri MC (2008) Electrical conductivity as a novel technique for characterization of colloidal gas aphrons (CGA). Colloids Surf A 317:262–269

    Article  CAS  Google Scholar 

  3. Gerken BM, Nicolai A, Linke D, Zorn H, Berger RG, Parlar H (2006) Effective enrichment and recovery of laccase C using continuous foam fractionation. Sep Purif Technol 49:291–294

    Article  CAS  Google Scholar 

  4. Fuda E, Jauregi P, Pyle DL (2004) Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant, AOT. Biotechnol Progr 20:514–525

    Article  CAS  Google Scholar 

  5. Jauregi P, Varley J (1998) Colloidal gas aphrons: a novel approach to protein recovery. Biotechnol Bioeng 59:471–481

    Article  CAS  Google Scholar 

  6. Noble MJ, Varley J (1999) Colloidal gas aphrons generated from the anionic surfactant AOT for the separation of proteins from aqueous solution. J Chem Technol Biotechnol 74:231–237

    Article  CAS  Google Scholar 

  7. Fuda E, Bhatia D, Pyle DL, Jauregi P (2005) Selective separation of β-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB. Biotechnol Bioeng 90:532–542

    Article  CAS  Google Scholar 

  8. Spigno G, Dermiki M, Pastori C, Casanova F, Jauregi P (2010) Recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant. Sep Purif Technol 71:56–62

    Article  CAS  Google Scholar 

  9. Jauregi P, Gilmour S, Varley J (1997) Characterisation of colloidal gas aphrons for subsequent use for protein recovery. Chem Eng J Bioch Eng 65:1–11

    Article  CAS  Google Scholar 

  10. Mulligan CN, Eftekhari F (2003) Remediation with surfactant foam of PCP—contaminated soil. Eng Geol 70:269–279

    Article  Google Scholar 

  11. Roy D, Tamayo A, Valsaraj KT (1992) Comparison of soil washing using conventional surfactant solutions and colloidal gas aphron suspensions. Sep Sci Technol 27:1555–1568

    Article  CAS  Google Scholar 

  12. Couto HJB, Massarani G, Biscaia EC Jr, Sant’Anna GL Jr (2009) Remediation of sandy soils using surfactant solutions and foams. J Hazard Mater 164:1325–1334

    Article  CAS  Google Scholar 

  13. Kommalapati RR, Valsaraj KT, Constant WD, Roy D (1997) Aqueous solubility enhancement and desorption of hexachlorobenzene from soil using a plant-based surfactant. Water Res 31:2161–2170

    Article  CAS  Google Scholar 

  14. Mukhopadhyay S, Hashim MA, Allen M, Sen Gupta B (2015) Arsenic removal from soil with high iron content using a natural surfactant and phosphate. Int J Environ Sci Technol 12:617–632

    Article  CAS  Google Scholar 

  15. Mukhopadhyay S, Hashim MA, Sahu JN, Yusoff I, Gupta BS (2013) Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil. J Environ Sci 25:2247–2256

    Article  CAS  Google Scholar 

  16. Matis KA, Zouboulis AI, Lazaridis NK (2003) Heavy metals removal by biosorption and flotation. Water Air Soil Pollut 3:143–151

    Article  CAS  Google Scholar 

  17. Kefala MI, Zouboulis AI, Matis KA (1999) Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ Pollut 104:283–293

    Article  CAS  Google Scholar 

  18. Zouboulis AI, Matis KA, Lazaridis NK (2001) Removal of metal ions from simulated wastewater by saccharomyces yeast biomass: combining biosorption and flotation processes. Sep Sci Technol 36:349–365

    Article  CAS  Google Scholar 

  19. Mansur EHA, Wang Y, Dai Y (2006) Removal of suspensions of fine particles from water by colloidal gas aphrons (CGAs). Sep Purif Technol 48:71–77

    Article  CAS  Google Scholar 

  20. Roy D, Valsaraj KT, Kottai SA (1992) Separation of organic dyes from wastewater by using colloidal gas aphrons. Sep Sci Technol 27:573–588

    Article  CAS  Google Scholar 

  21. Basu S, Malpani PR (2001) Removal of methyl orange and methylene blue dye from water using colloidal gas aphron-effect of processes parameters. Sep Sci Technol 36:2997–3013

    Article  CAS  Google Scholar 

  22. Huang Y, Wang Y, Dai Y (2002) Separation of organic dyes from water by Colloidal gas aphrons. Tsinghua Sci Technol 7:46–51

    CAS  Google Scholar 

  23. Abdullah SF, Radiman S, Hamid MA, Ibrahim NB (2006) Effect of calcination temperature on the surface morphology and crystallinity of tungsten (VI) oxide nanorods prepared using colloidal gas aphrons method. Colloids Surf A 280:88–94

    Article  CAS  Google Scholar 

  24. Amiri MC, Valsaraj KT (2004) Effect of gas transfer on separation of whey protein with aphron flotation. Sep Purif Technol 35:161–167

    Article  CAS  Google Scholar 

  25. Matsushita K, Mollah AH, Stuckey DC, del Cerro C, Bailey AI (1992) Predispersed solvent extraction of dilute products using colloidal gas aphrons and colloidal liquid aphrons: aphron preparation, stability and size. Colloids Surf 69:65–72

    Article  CAS  Google Scholar 

  26. Molaei A, Waters KE (2015) Aphron applications—a review of recent and current research. Adv Colloid Interface Sci 216:36–54

    Article  CAS  Google Scholar 

  27. Save SV, Pangarkar VG (1994) Characterisation of colloidal gas aphron. Chem Eng Commun 127:35–54

    Article  Google Scholar 

  28. Roghair I, Van Sint AnnalandM, Kuipers HJAM (2013) Drag force and clustering in bubble swarms. AIChE J 59(5):1791–1800. doi:10.1002/aic.13949

    Article  CAS  Google Scholar 

  29. Amiri MC, Woodburn ET (1990) A method for the characterisation of colloidal gas aphron dispersions. Chem Eng Res Des 68:154–160

    CAS  Google Scholar 

  30. Paul ED, Atiemo-Obeng VA, Kresta SM (2004) Handbook of industrial mixing: science and practice. Wiley, New York. ISBN: 978-0-471-26919-9

  31. Sebba F (1985) Improved generator for micron–sized bubbles. Chem Ind 4:91–92

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the research deputy at Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad C. Amiri.

Additional information

We regret to inform you that The Journal of Surfactants and Detergents must retract “Influence of the Disk Diameter and Baffle Position on the Performance of Generated Colloidal Gas Aphrons” by S.S. Banifatemi, H. Mohammadifard, and M.C. Amiri. The citation for this article is J Surfact Deter. (2016) 19: 173-181.

After a thorough investigation carried out under the Committee on Publication Ethics guidelines, we find that Figures 4-9 in this article are repetitions of the same experiments with similar results and conclusions as previously published in “A New Stability Index for Characterizing the Colloidal Gas Aphrons Dispersion”, by H. Sadeghialiabadi, and M.C. Amiri without proper citation or authorized permission. The citation for this article is Colloids and Surfaces A: Physicochem. Eng. Aspects 471: (2015) 170-171. We apologize for the inconvenience.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banifatemi, S.S., Mohammadifard, H. & Amiri, M.C. RETRACTED ARTICLE: Influence of the Disk Diameter and Baffle Position on the Performance of Generated Colloidal Gas Aphrons. J Surfact Deterg 19, 173–181 (2016). https://doi.org/10.1007/s11743-015-1750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1750-2

Keywords

Navigation