Skip to main content
Log in

Self-Aggregation of Catanionic Surface Active Ionic Liquids in Aqueous Solutions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The self-aggregation behavior of catanionic surface active ionic liquids (SAIL), 1-alkyl-3-methylimidazolium alkyl sulfates, [C4mim][C16SO4] and [C6mim][C14SO4], in aqueous solutions was explored by several techniques. These results were analyzed together with the concerning data of [C8mim][C12SO4] reported previously. The feature of these SAIL is that the total carbon number of the hydrophobic chains is kept constant, while only the length of the two hydrocarbon chains varies. Because of the different intermolecular and intramolecular interactions, the hydrophobic interaction of asymmetrical SAIL is enhanced, which explains the minimal CMC value of [C4mim][C16SO4]. Thermal motion of hydrocarbon chains at the air–water interface leads to higher A min and lower Γmax values with the increasing asymmetry of two hydrophobic chains. The conductivity measurements reveal that the micellization process is spontaneous and entropy-driven in the studied temperature range. This work indicates that the symmetry of alkyl chains can influence the aggregation behavior of [C n mim][C m SO4] in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302:792–793

    Article  Google Scholar 

  2. Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  3. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399:28–29

    Article  Google Scholar 

  4. Wang Y, Yang H (2005) Synthesis of CoPt nanorods in ionic liquids. J Am Chem Soc 127:5316–5317

    Article  CAS  Google Scholar 

  5. Zhao DB, Wu M, Kou Y, Min E (2002) Ionic liquids: application in catalysis. Catal Today 74:157–189

    Article  CAS  Google Scholar 

  6. Anouti M, Jones J, Boisset A, Jacquemin J, Caravanier MC, Lemordant D (2009) Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. J Colloid Interf Sci 340:104–111

    Article  CAS  Google Scholar 

  7. Behera K, Kumar V, Pandey S (2010) Role of the surfactant structure in the behavior of hydrophobic ionic liquids within aqueous micellar solutions. Chem Phys Chem 11:1044–1052

    CAS  Google Scholar 

  8. Behera K, Pandey S (2009) Interaction between ionic liquid and zwitterionic surfactant: a comparative study of two ionic liquids with different anions. J Colloid Interf Sci 331:196–205

    Article  CAS  Google Scholar 

  9. Behera K, Om H, Pandey S (2009) Modifying properties of aqueous cetyltrimethylammonium bromide with external additives: ionic liquid 1-hexyl-3-methylimidazolium bromide versus cosurfactant n-hexyltrimethylammonium bromide. J Phys Chem B 113:786–793

    Article  CAS  Google Scholar 

  10. Gao YA, Li N, Li XW, Zhang SH, Zheng LQ, Bai XT, Yu L (2009) Microstructures of micellar aggregations formed within 1-butyl-3-methylimidazolium type ionic liquids. J Phys Chem B 113:123–130

    Article  CAS  Google Scholar 

  11. Cornellas A, Perez L, Comelles F, Ribosa I, Manresa I, Garcia MT (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interf Sci 355:164–171

    Article  CAS  Google Scholar 

  12. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Canongia L, Seddon KR, Paulo L, Rebelo N (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112:8645–8650

    Article  CAS  Google Scholar 

  13. Karukstis KK, McDonough JR (2005) Characterization of the aggregates of N-alkyl-N-methylpyrrolidinium bromide surfactants in aqueous solution. Langmuir 21:5716–5721

    Article  CAS  Google Scholar 

  14. Fang DW, Tong DW, Guan W, Wang H, Yang JZ (2010) Predicting properties of amino acid ionic liquid homologue of 1-Alkyl-3-methylimidazolium glycine. J Phys Chem B 114:13808–13814

    Article  CAS  Google Scholar 

  15. Wang JJ, Wang HY, Zhang SL, Zhang HC, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111:6181–6188

    Article  CAS  Google Scholar 

  16. Blesica M, Marquesa MH, Plechkovab NV, Seddonab KR, Paulo L, Rebelo N, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  Google Scholar 

  17. Dong B, Li N, Zheng LQ, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  18. Dong B, Zhao XY, Zheng LQ, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A 317:666–672

    Article  CAS  Google Scholar 

  19. Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175

    Article  CAS  Google Scholar 

  20. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  21. Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ (2009) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829

    Article  CAS  Google Scholar 

  22. Wasserscheid P, Hal R, Bösmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even “greener” ionic liquid. Green Chem 4:400–404

    Article  CAS  Google Scholar 

  23. Miskolczy Z, Nagy KS, Biczók L, Göktürk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300

    Article  CAS  Google Scholar 

  24. Jiao JJ, Dong B, Zhang HN, Zhao YY, Wang XQ, Wang R, Yu L (2012) Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water. J Phys Chem B 116:958–965

    Article  CAS  Google Scholar 

  25. Pevzner S, Regev O, Lind O, Lindén M (2003) Evidence for vesicle formation during the synthesis of catanionic templated mesoscopically ordered silica as studied by Cryo-TEM. J Am Chem Soc 125:652–653

    Article  CAS  Google Scholar 

  26. Hao JC, Hoffmann H (2004) Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr Opin Colloid In 9:279–293

    Article  CAS  Google Scholar 

  27. Yuan ZW, Dong SL, Liu WM, Hao JC (2009) Transition from vesicle phase to lamellar phase in salt-free catanionic surfactant solution. Langmuir 25:8974–8981

    Article  CAS  Google Scholar 

  28. Sun WJ, Shen YW, Hao JC (2011) Phase behavior and rheological properties of salt-free catanionic TTAOH/DA/H2O system in the presence of hydrophilic and hydrophobic salts. Langmuir 27:1675–1682

    Article  CAS  Google Scholar 

  29. Péteilh CT, Devoisselle JM, Vioux A, Judeinstein P, In M, Viau L (2011) Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. Phys Chem Chem Phys 13:15523–15529

    Article  Google Scholar 

  30. Jiao JJ, Han B, Lin MJ, Cheng N, Yu L, Liu M (2013) Salt-free catanionic surface active ionic liquids 1-alkyl-3-methylimidazolium alkylsulfate: aggregation behavior in aqueous solution. J Colloid Interf Sci 412:24–30

    Article  CAS  Google Scholar 

  31. Lisi RD, Inglese A, Milioto A, Pellerito A (1996) Thermodynamic studies of sodium dodecyl sulfate-sodium dodecanoate mixtures in water. J Colloid Interf Sci 180:174–187

    Article  Google Scholar 

  32. Xing H, Yan P, Zhao KS, Xiao JX (2011) Effect of headgroup size on the thermodynamic properties of micellization of dodecyltrialkylammonium bromides. J Chem Eng Data 56:865–873

    Article  CAS  Google Scholar 

  33. Hines JD, Fragneto G, Thomas RK, Garrett PR, Rennie GK, Rennie AR (1997) Neutron reflection from mixtures of sodium dodecyl sulfate and dodecyl betaine adsorbed at the hydrophobic solid/aqueous interface. J Colloid Interf Sci 189:259–267

    Article  CAS  Google Scholar 

  34. Varga I, Meszaros R, Gilanyi T (2007) Adsorption of sodium alkyl sulfate homologues at the air/solution interface. J Phys Chem B 111:7160–7168

    Article  CAS  Google Scholar 

  35. Vaghela NM, Sastry NV, Aswa VK (2011) Surface active and aggregation behavior of methylimidazolium-based ionic liquids of type [Cnmim][X], n = 4, 6, 8 and [X] = Cl, Br, and I in water. Colloid Polym Sci 289:309–322

    Article  CAS  Google Scholar 

  36. Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15:673–683

    Article  CAS  Google Scholar 

  37. Bai GY, Wang JB, Wang YJ, Yan HK (2002) Thermodynamics of hydrophobic interaction of dissymmetric gemini surfactants in aqueous solutions. J Phys Chem B 106:6614–6616

    Article  CAS  Google Scholar 

  38. Wang XY, Wang JB, Wang YL, Ye JP, Yan HK (2003) Micellization of a series of dissymmetric gemini surfactants in aqueous solution. J Phys Chem B 107:11428–11432

    Article  CAS  Google Scholar 

  39. Fan YR, Li YJ, Cao MW, Wang JB, Wang YL, Thomas RK (2007) Micellization of dissymmetric cationic gemini surfactants and their interaction with dimyristoylphosphatidylcholine vesicles. Langmuir 23:11458–11464

    Article  CAS  Google Scholar 

  40. Wang XD, Li QT, Chen X, Li ZH (2012) Effects of structure dissymmetry on aggregation behaviors of quaternary ammonium gemini surfactants in a protic ionic liquid EAN. Langmuir 28:16547–16554

    Article  CAS  Google Scholar 

  41. Floyd DT, Schunicht C, Gruening B, Holmberg K (2001) Handbook of applied surface and colloid chemistry. Wiley, New York

    Google Scholar 

  42. Wang XD, Li QT, Chen X, Li ZH (2012) Effects of structure dissymmetry on aggregation behaviors of quaternary ammonium gemini surfactants in a protic ionic liquid EAN. Langmuir 28:16547–16554

    Article  CAS  Google Scholar 

  43. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  44. Shah DO, Schulman JH (1967) Influence of calcium, cholesterol, and unsaturation on lecithin monolayers. J Lipid Res 8:215–226

    CAS  Google Scholar 

  45. Patist A, Chhabra V, Pagidipati R, Shah R, Shah DO (1997) Effect of chain length compatibility on micellar stability in sodium dodecyl sulfate/alkyltrimethylammonium bromide solutions. Langmuir 13:432–434

    Article  CAS  Google Scholar 

  46. Inoue T, Ebina H, Dong B, Zheng LQ (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interf Sci 314:236–241

    Article  CAS  Google Scholar 

  47. Shah SS, Jamroz NU, Sharif QM (2001) Micellization parameters and electrostatic interactions in micellar solution of sodium dodecyl sulfate (SDS) at different temperatures. Colloids Surf A 178:199–206

    Article  CAS  Google Scholar 

  48. Hunter RJ (1989) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 21373128), Scientific and Technological Projects of Shandong Province of China (no. 2014GSF117001), Natural Science Foundation of Shandong Province of China (no. ZR2011BM017) and the Project of Sinopec (no. P13045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, Q., Wei, H. et al. Self-Aggregation of Catanionic Surface Active Ionic Liquids in Aqueous Solutions. J Surfact Deterg 18, 421–428 (2015). https://doi.org/10.1007/s11743-014-1666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1666-2

Keywords

Navigation