Skip to main content
Log in

Constructing Gemini-Like Surfactants with Single-Chain Surfactant and Dicarboxylic Acid Sodium Salts

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Construction of gemini-like surfactants using the cationic single-chain surfactant cetyltrimethylammonium bromide C16H33N(CH3)3Br2 (CTAB) and the anionic dicarboxylic acid sodium salt NaOOC(CH2) n-2COONa (C n Na2, n = 4, 6, 8, 10, 12) by way of non-covalent interactions has been investigated by surface tension measurements, hydrogen-1 nuclear magnetic resonance (1H NMR) spectroscopy and isothermal titration microcalorimetry (ITC). The critical micelle concentrations (cmc) of the CTAB/C n Na2 mixtures are obviously lower than that of CTAB and strongly depend on the mixing ratio. Moreover, the cmc values of the CTAB/C n Na2 mixtures decrease gradually with an increasing methylene chain length of C n Na2, indicating hydrophobic interaction between the hydrocarbon chains of CTAB and C n Na2 facilitates micellization of the mixtures. In particular, the ITC curves and 1H NMR spectra indicate that the binding ratio of CTAB to C n Na2, except C4Na2, is around 2:1, i.e., (CTAB)2C n Na2. Additionally, CTAB/C n Na2 mixtures are soluble in a whole molar ratio and concentration ranges have been studied, even at the electrical neutralization point. Therefore, these results reveal that highly soluble gemini-like surfactants are conveniently constructed with oppositely-charged cationic single-chain surfactants and dicarboxylic acid sodiums. In an attempt at improving the performance of surfactants this work provides guidance for choosing additives that form gemini-like surfactants via an uncomplicated synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menger FM, Littau CA (1991) Gemini surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452

    Article  CAS  Google Scholar 

  2. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 39:1906–1920

    Article  Google Scholar 

  3. Zana R (2002) Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Interface Sci 97:205–253

    Article  CAS  Google Scholar 

  4. Zana R (2002) Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci 248:203–220

    Article  CAS  Google Scholar 

  5. Oda R, Huc I, Schmutz M, Candau SJ, MacKintosh FC (1999) Tuning bilayer twist using chiral counterions. Nature 399:566–569

    Article  CAS  Google Scholar 

  6. Hait SK, Moulik SP (2002) Gemini surfactants: a distinct class of self-assembling molecules. Curr Sci 82:1101–1111

    CAS  Google Scholar 

  7. Song LD, Rosen MJ (1996) Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir 12:1149–1153

    Article  CAS  Google Scholar 

  8. Han YC, Wang YL (2011) Aggregation behavior of gemini surfactants and their Interaction with macromolecules in aqueous solution. Phys Chem Chem Phys 13:1939–1956

    Article  CAS  Google Scholar 

  9. Zana R, Xia JD (2004) Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications. CRC Press, Boca Raton

    Google Scholar 

  10. Mitjans M, Martínez V, Clapés P, Pérez L, Infante MR, Vinardell MP (2003) Low potential ocular irritation of arginine-based gemini surfactants and their mixtures with nonionic and zwitterionic surfactants. Pharm Res 20:1697–1701

    Article  CAS  Google Scholar 

  11. Páhi AB, Király Z, Mastalir Á, Dudás J, Puskás S, Vágó Á (2008) Thermodynamics of micelle formation of the counterion coupled gemini surfactant bis(4-(2-dodecyl) benzenesulfonate)-jeffamine salt and its dynamic adsorption on sandstone. J Phys Chem B 112:15320–15326

    Article  Google Scholar 

  12. Borde C, Nardello V, Wattebled L, Laschewsky A, Aubry JM (2008) A gemini amphiphilic phase transfer catalyst for dark singlet oxygenation. J Phys Org Chem 21:652–658

    Article  CAS  Google Scholar 

  13. Bombelli C, Caracciolo G, Di Profio P, Diociaiuti M, Luciani P, Mancini G, Mazzuca C, Marra M, Molinari A, Monti D, Toccacieli L, Venanzi M (2005) Inclusion of a photosensitizer in liposomes formed by DMPC/gemini surfactant: correlation between physicochemical and biological features of the complexes. J Med Chem 48:4882–4891

    Article  CAS  Google Scholar 

  14. Caillier L, Taffin de Givenchy E, Levy R, Vandenberghe Y, Geribaldi S, Guittard F (2009) Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J Colloid Interface Sci 332:201–207

    Article  CAS  Google Scholar 

  15. Kirby AJ, Camilleri P, Engberts JB, Feiters MC, Nolte RJ, Söderman O, Bergsma M, Bell PC, Fielden ML, Rodríguez CLG, Guédat P, Kremer A, McGregor C, Perrin C, Ronsin G, van Eijk MCP (2003) Gemini surfactants: new synthetic vectors for gene transfection. Angew Chem Int Ed 42:1448–1457

    Article  CAS  Google Scholar 

  16. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58

    Article  CAS  Google Scholar 

  17. Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101

    Article  CAS  Google Scholar 

  18. Wang C, Wang ZQ, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res 45:608–618

    Article  CAS  Google Scholar 

  19. Wang C, Wang ZQ, Zhang X (2011) Superamphiphiles as building blocks for supramolecular engineering: towards functional materials and surfaces. Small 7:1379–1383

    Article  CAS  Google Scholar 

  20. Sakai H, Okabel Y, Tsuchiya K, Sakai K, Abe M (2011) Catanionic mixtures forming gemini-like amphiphiles. J Oleo Sci 60:549–555

    Article  CAS  Google Scholar 

  21. Yu DF, Tian MZ, Fan YX, Ji G, Wang YL (2012) Aggregate transitions in aqueous solutions of sodium dodecylsulfate with a “gemini-type” organic salt. J Phys Chem B 116:6425–6430

    Article  CAS  Google Scholar 

  22. Zhu LY, Han YC, Tian MZ, Wang YL (2013) Complex formation and aggregate transitions of sodium dodecyl sulfate with an oligomeric connecting molecule in aqueous solution. Langmuir 29:12084–12092

    Article  CAS  Google Scholar 

  23. Wang MN, Fan YX, Han YC, Nie ZX, Wang YL (2013) Coacervation of cationic gemini surfactant with N-Benzoylglutamic acid in aqueous solution. Langmuir 29:14839–14847

    Article  CAS  Google Scholar 

  24. Zhang YM, Feng YJ, Wang YJ, Li XL (2013) CO2-switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 29:4187–4192

    Article  CAS  Google Scholar 

  25. Skold RO, Tunius MAR (1992) Self-association of 1,10-decanedicarboxylates in aqueous solution. J Colloid Interface Sci 152:183–196

    Article  Google Scholar 

  26. Han F, Huang JB, Zheng B, Li ZC (2004) Surface properties of bolaamphiphiles in ethanol/water mixed solutions. Colloids Surf A 242:115–122

    Article  CAS  Google Scholar 

  27. Danino D, Talmon Y, Zana R (1995) Alkanediyl-α, ω-bis(dimethylalkyl ammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions. Langmuir 11:1448–1456

    Article  CAS  Google Scholar 

  28. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  29. Wang G, Olofsson G (1998) Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution. J Phys Chem B 102:9276–9283

    Article  CAS  Google Scholar 

  30. Dai S, Tam KC, Li L (2001) Isothermal titration calorimetric studies on interactions of ionic surfactant and poly(oxypropylene)-poly(oxyethylene)-poly(oxypropylene) triblock copolymers in aqueous solutions. Macromolecules 34:7049–7055

    Article  CAS  Google Scholar 

  31. Dai S, Tam KC (2004) Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly(propylene glycol)s and sodium dodecyl sulfate. Langmuir 20:2177–2183

    Article  CAS  Google Scholar 

  32. Lapitsky Y, Parikh M, Kaler EW (2007) Calorimetric determination of surfactant/polyelectrolyte binding isotherms. J Phys Chem B 111:8379–8387

    Article  CAS  Google Scholar 

  33. Han YC, Xia L, Zhu LY, Zhang SS, Li ZB, Wang YL (2012) Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium). Langmuir 28:15134–15140

    Article  CAS  Google Scholar 

  34. Hong L, Bush WD, Hatcher LQ, Simon J (2008) Determining thermodynamic parameters from isothermal calorimetric isotherms of the binding of macromolecules to metal cations originally chelated by a weak ligand. J Phys Chem B 112:604–611

    Article  CAS  Google Scholar 

  35. Olofsson G, Loh W (2009) On the use of titration calorimetry to study the association of surfactants in aqueous solutions. J Braz Chem Soc 20:577–593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial supports from Chinese Academy of Sciences and National Natural Science Foundation of China (Grants 21025313, 21321063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Wang, R. & Wang, Y. Constructing Gemini-Like Surfactants with Single-Chain Surfactant and Dicarboxylic Acid Sodium Salts. J Surfact Deterg 18, 25–31 (2015). https://doi.org/10.1007/s11743-014-1632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1632-z

Keywords

Navigation