Skip to main content
Log in

Stimulation of Phenol Removal Efficiency of Aspergillus versicolor by Surfactants, a Promising Way to Treat Phenol-Containing Waste Waters

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The effect of the cationic surfactant, dodecyl trimethyl ammonium bromide (DTAB), on phenol bioremoval efficiency of an Aspergillus versicolor strain was examined. The strain was grown in mineral salt (MS) medium and the effect of DTAB was investigated as a function of different pH values, phenol and surfactant concentrations. The effect of pH was tested within the range of 4–7 and the maximum bioremoval was found at pH 4. Initial phenol concentrations investigated ranged from 100 to 600 mg/L, and the effects of surfactant concentrations on the removal were tested with 0, 0.25, 0.5 and 1 mM DTAB, which showed that 0.5 mM surfactant was the most effective concentration. The maximum bioremoval rates found after 72 h incubation were 99.48 and 99.15 % in 100 and 200 mg/L initial phenol-containing samples, respectively, where the phenol removal capacity of the fungus was only 142.373 mg/g in the DTAB blank samples. The maximum phenol uptake capacity of 267.162 mg/g was measured in the presence of 0.5 mM DTAB at 200 mg/L initial phenol concentration. These results showed that DTAB considerably increased the bioremoval efficiency of the strain tested at relatively lower phenol concentrations. The feasibility of this bioremoval method for industrial wastewater treatment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169:324–332

    Article  CAS  Google Scholar 

  2. Huang Y, Ma X, Liang G, Yan H (2008) Adsorption of phenol with modified rectorite from aqueous solution. Chem Eng J 14:1–8

    Article  CAS  Google Scholar 

  3. Ukrainczyk L, McBride MB (1992) Oxidation of phenol in acidic aqueous suspensions of manganese oxides. Clay Clay Miner 40:157–166

    Article  CAS  Google Scholar 

  4. Huang X, Wang D, Liu C, Hu M, Qu Y, Gao P (2003) The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochem Bioph Res Co 311:491–494

    Article  CAS  Google Scholar 

  5. Jiang H-L, Tay J-H, Tay ST-NL (2002) Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett App Microbiol 35:439–445

    Article  Google Scholar 

  6. Van Schie PM, Young LY (2000) Biodegradation of phenol: mechanisms and applications. Bioremediat J 4:1–18

    Article  Google Scholar 

  7. Shivaraman N, Kumaran P, Parhad NM (1978) Phenol degradation by Candida Tropicalis and influence of other toxicants. Ind J Environ Health 20:101–111

    CAS  Google Scholar 

  8. Reardon KF, Mosteller DC, Rogers JDB (2000) Biodegradation kinetics of benzene, toluene and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  CAS  Google Scholar 

  9. Aleksieva Z, Ivanova D, Godjevargova T, Atanasov B (2002) Degradation of some phenol derivatives by Trichosporon cutaneum R57. Process Biochem 37:1215–1219

    Article  CAS  Google Scholar 

  10. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    CAS  Google Scholar 

  11. Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929

    Article  CAS  Google Scholar 

  12. Yesilada Ö, Fiskin K, Yesilada E (1995) The use of white rot fungus funalia trogii (malatya) for the decolourization and phenol removal from olive mill wastewater. Environ Technol 16:95–100

    Article  CAS  Google Scholar 

  13. Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents—identification and degradation potential. Process Biochem 39:1001–1006

    Article  CAS  Google Scholar 

  14. Ghoreishi SM, Behpour M, Shabani-Nooshabadi M (2009) Interaction of anionic azo dye and TTAB—cationic surfactant. J Braz Chem Soc 22:460–465

    Article  Google Scholar 

  15. Aksu Z, Ertuğrul S, Dönmez G (2010) Methylene blue biosorption by Rhizopus arrhizus: effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chem Eng J 158:474–481

    Article  CAS  Google Scholar 

  16. Ansari R, Seyghali B, Mohammad-khah A, Zanjanchi MA (2012) Highly efficient adsorption of anionic dyes from aqueous solutions using sawdust modified by cationic surfactant of cetyltrimethylammonium bromide. J Surfact Deterg 15:557–565

    Article  CAS  Google Scholar 

  17. Gül ÜD, Dönmez G (2012) Effect of dodecyltrimethylammonium bromide surfactant on decolorization of remazol blue by living Aspergillus versicolor strain. J Surfact Deterg 15:797–803

    Article  Google Scholar 

  18. Rawajfih Z, Nsour N (2006) Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J Colloid Interface Sci 298:39–49

    Article  CAS  Google Scholar 

  19. Richards S, Bouazza A (2007) Phenol adsorption in organo-modified basaltic clay and bentonite. Appl Clay Sci 37:133–142

    Article  CAS  Google Scholar 

  20. Wang T-Y, Hsu C-H, Chen T-P, Conte ED, Fenner D, Crossley L, Honeyman CH, Suen S-Y (2011) Adsorption of phenolic compounds onto trimethylstearylammonium surfactant-immobilized cation-exchange membranes. Microchem J 99:388–393

    Article  CAS  Google Scholar 

  21. Liu Z-F, Zeng G-M, Wang J, Zhong H, Ding Y, Yuan X-Z (2010) Effects of monorhamnolipid and Tween 80 on the degradation of phenol by Candida tropicalis. Process Biochem 45:805–809

    Article  CAS  Google Scholar 

  22. Tastan BE, Ertuğrul S, Dönmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101:870–876

    Article  CAS  Google Scholar 

  23. Afzal M, Iqbal S, Rauf S, Khalid ZM (2007) Characteristics of phenol biodegradation in saline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei. J Hazards Mater 149:60–66

    Article  CAS  Google Scholar 

  24. Garcia IG, Pena PRJ, Venceslada JLB, Martin AM, Santos MAM, Gomez ER (2000) Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem 35:751–758

    Article  CAS  Google Scholar 

  25. El-Naas MH, Shaheen AA-M, Makhlouf S (2009) Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater 164:720–725

    Article  CAS  Google Scholar 

  26. Marrot B, Barrios-Martinez A, Moulin P, Roche N (2006) Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J 30:174–183

    Article  CAS  Google Scholar 

  27. Garcia-Pena EI, Zarate-Segura P, Guerra-Blanco P, Poznyak T, Chairez I (2012) Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water Air Soil Poll 223(7):4047–4064

    Article  CAS  Google Scholar 

  28. Jurado E, Fernandez-Serrano M, Lechuga M, Rios F (2012) Environmental ımpact of ether carboxylic derivative surfactants. J Surfact Deterg 15:1–7

    Article  CAS  Google Scholar 

  29. Alehyen S, Bensejjay F, El Achouri M, Perez L, Infante MR (2010) Study of the ınteraction between methyl orange and mono and bis-quaternary ammonium surfactants. J Surfact Deterg 13:225–231

    Article  CAS  Google Scholar 

  30. Zhong H, Zeng GM, Liu JX, Xu XM, Yuan XZ, Fu HY, Huang GH, Liu ZF, Ding Y (2008) Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 79:671–677

    Article  CAS  Google Scholar 

  31. Taştan BE, Karatay SE, Dönmez G (2012) Bioremoval of textile dyes with different chemical structures by Aspergillus versicolor in molasses medium. Water Sci Technol 66(10):2177–2184

    Article  Google Scholar 

  32. Saha B, Taylor K, Bewtra J, Biswas N (2011) Laccase-catalyzed removal of phenol and benzenediols from wastewater. J Hazard Toxic Radioact Waste 15(1):13–20

    Article  CAS  Google Scholar 

  33. Singh A, Hamme JDV, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects (research review paper). Biotechnol Adv 25:99–121

    Article  CAS  Google Scholar 

  34. Liu ZF, Zeng GM, Zhong H, Yuan XZ, Fu HY, Zhou MF, Ma XL, Li H, Li JB (2012) Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J Microbiol Biotechnol 28(1):175–181

    Article  Google Scholar 

  35. Zhang Y, Zeng Z, Zeng G, Liu X, Liu Z, Chen M, Liu L, Li J, Xie G (2012) Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids Surf B 1:7–12

    Article  Google Scholar 

  36. Ji G, Zhang H, Huang F, Huang X (2009) Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. J Environ Sci 21:1486–1490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevgi Ertuğrul Karatay.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertuğrul Karatay, S., Gül, Ü.D. & Dönmez, G. Stimulation of Phenol Removal Efficiency of Aspergillus versicolor by Surfactants, a Promising Way to Treat Phenol-Containing Waste Waters. J Surfact Deterg 17, 1223–1228 (2014). https://doi.org/10.1007/s11743-014-1606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1606-1

Keywords

Navigation