Skip to main content
Log in

Comparative Analysis of Rhamnolipids from Novel Environmental Isolates of Pseudomonas aeruginosa

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A comparative analysis of rhamnolipids from environmental isolates of Pseudomonas aeruginosa was undertaken to evaluate strain-specific rhamnolipid fingerprints obtained under different growth conditions. Environmental isolates of P. aeruginosa produced rhamnolipids on different types of substrates, including cheap and renewable sources like sunflower oil from deep fryers and sunflower oil mill effluent. Rhamnolipids were monitored by high-performance liquid chromatography–electrospray ionization interface mass spectrometry, which allowed fast and reliable identification and quantification of the congeners present. The highest concentration of total rhamnolipids of 3.33 g/l was obtained by the strain P. aeruginosa 67, recovered from petroleum contaminated soil, and strains D1 (1.73 g/l) and D2 (1.70 g/l), recovered from natural microbial consortia originated from mazut-contaminated soil, grown on sunflower oil as a carbon source. Di- to mono-rhamnolipids ratios were in the range of 0.90–5.39 for different media composition and from 1.12 to 4.17 for different producing strains. Rhamnolipid profiles of purified mixtures of all tested strains are similar with chain length from C8–C12, pronounced abundance of Rha–C10–C10 and Rha–Rha–C10–C10 congeners, and a low content of 3-(3-hydroxyalkanoyloxy)-alkanoic acids. Concentrations of major congeners of RLs were found to slightly vary, depending on strain and growth conditions, while variations in minor congeners were more pronounced. Statistically significant increase of critical micelle concentration values was observed with lowering the ratio of total mono- to di-rhamnolipids ratio indicating that mono-rhamnolipids start to form micelles at lower concentration than di-rhamnolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  Google Scholar 

  2. Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33

    Article  CAS  Google Scholar 

  3. Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectrom 37:41–46

    Article  Google Scholar 

  4. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  CAS  Google Scholar 

  5. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  Google Scholar 

  6. Schooling SR, Charaf UK, Allison DG, Gilbert P (2004) A role for rhamnolipid in biofilm dispersion. Biofilms 1:91–99

    Article  Google Scholar 

  7. Tremblay J, Richardson AP, Lepine F, Déziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 9:2622–2630

    Article  CAS  Google Scholar 

  8. Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B 95:23–29

    Article  CAS  Google Scholar 

  9. Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121

    Article  CAS  Google Scholar 

  10. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a PAH-degrading bacterium P. aeruginosa strain NY3. Biotechnol Adv 28:635–643

    Article  CAS  Google Scholar 

  11. Müller MM, Hörmann B, Kugel M, Syldatk C, Hausmann R (2011) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol 89:585–592

    Article  Google Scholar 

  12. Górna H, Lawnicazak Ł, Zgoła-Greśkowiak A, Kaczorek E (2011) Differences and dynamic changes in cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-pollutes soil as a response to various carbon sources and the external addition of rhamnolipids. Biores Technol 10:3028–3033

    Article  Google Scholar 

  13. Haba E, Abalos A, Jauregui O, Espuny MJ, Manresa A (2003) Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surf Deterg 6:155–161

    Article  CAS  Google Scholar 

  14. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCIB 40044. Biotechnol Bioeng 81:316–322

    Article  CAS  Google Scholar 

  15. Costa SGVAO, Nitschke M, Haddad R, Eberlin MN, Contiero J (2006) Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem 41:483–488

    Article  CAS  Google Scholar 

  16. Dubeau D, Déziel E, Woods DE, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263–274

    Article  Google Scholar 

  17. Mata-Sandalova JC, Karns J, Torrens A (2001) Effect of nutritional and environmental conditions on production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256

    Article  Google Scholar 

  18. Basu A, Apte SK, Phale PS (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72:2226–2230

    Article  CAS  Google Scholar 

  19. Lăzăroaie MM (2009) Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1. Cent Eur J Biol 4:469–481

    Article  Google Scholar 

  20. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. ABM Express 1:5. doi:10.1186/2191-0855-1-5

    Article  Google Scholar 

  21. Das K, Mukherjee AK (2005) Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl Microbiol Biotechnol 69:192–199

    Article  CAS  Google Scholar 

  22. Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north-east India. Bioresour Technol 98:1339–1345

    Article  CAS  Google Scholar 

  23. Chrzanowski Ł, Ławniczak Ł, Czaczyk K (2012) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419

    Article  CAS  Google Scholar 

  24. Moore ERB, Tindal BJ, Martins Dos Santos VAP, Pieper DH, Ramos JL, Palleroni NJ (2006) In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds), Nonmedical Pseudomonas. The prokaryotes. Springer, New York, pp 646–703

  25. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85:1–8

    Article  CAS  Google Scholar 

  26. Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    Article  CAS  Google Scholar 

  27. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  28. Wei Y-H, Chou C-L, Chang J-S (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Engin J 27:146–154

    Article  CAS  Google Scholar 

  29. Bafghi MK, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surf Deterg 15:679–684

    Article  Google Scholar 

  30. Jovancicevic B, Antic M, Pavlovic I, Vrvic M, Beskoski V, Kronimus A, Schwarzbauer J (2008) Transformation of petroleum saturated hydrocarbons during soil bioremediation experiments. Water Air Soil Pollut 190:299–307

    Article  CAS  Google Scholar 

  31. Beskoski VP, Gojgic-Cvijovic G, Milic J, Ilic M, Miletic S, Solevic T, Vrvic MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)—a field experiment. Chemosphere 83:34–40

    Article  CAS  Google Scholar 

  32. Karadzic I, Masui A, Fujiwara N (2004) Purification and characterization of a protease from Pseudomonas aeruginosa growth in cutting oil. J Biosci Bioeng 98:145–152

    CAS  Google Scholar 

  33. Clark KG, Ballot F, Reid SJ (2010) Enhanced rhamnolipid production by Pseudomonas aeruginosa under phosphate limitation. World J Microbiol Biotechnol 26:2179–2184

    Article  Google Scholar 

  34. Löser C, Seidel H, Zehnsdorf A, Stottmeister U (1998) Microbial degradation of hydrocarbon in soil during aerobic/anaerobic change and under purely aerobic conditions. Appl Microbiol Biotechnol 49:631–636

    Article  Google Scholar 

  35. Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  36. Gunther NW, Nunez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. App Environ Microbiol 71:2288–2293

    Article  CAS  Google Scholar 

  37. Chandrasekaran EV, BeMiller JN (1980) In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic Press, New York, pp 89–96

    Google Scholar 

  38. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 39:1579–1590

    Article  Google Scholar 

  39. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    Article  CAS  Google Scholar 

  40. Bharali P, Konwar BK (2011) Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Appl Biochem Biotechnol 146:1444–1460

    Article  Google Scholar 

  41. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa Strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Article  Google Scholar 

  42. Dimitrijevic A, Velickovic D, Rikalovic M, Avramovic N, Milosavic N, Jankov R, Karadzic I (2011) Simultaneous production of exopolysaccharide and lipase from extremophilic Pseudomonas aeruginosa san-ai strain: a novel approach for lipase immobilization and purification. Carbohyd Polym 83:1397–1401

    Article  CAS  Google Scholar 

  43. Karadzic I, Masui A, Izrael-Zivkovic L, Fujiwara N (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as metal working fluid. J Biosc Bioeng 102:82–89

    Article  CAS  Google Scholar 

  44. Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Denziel E (2011) In: Chávez S (ed) Biosurfactants, microbiology monographs 20. Springer, Berlin. doi:10.1007/978-3-642-14490-5_2

  45. Miller RM (1995) Surfactant-enhanced bioavailability of slightly soluble organic compounds. In: H.D. Skipper HD, Turco RF (eds) Bioremediation: Science and Applications. Soil Science Society of America Madison (USA) 1995, pp 322–354

  46. Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220

    Article  CAS  Google Scholar 

  47. Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project III 43004 of the Ministry of Science and Technological Development of Serbia and by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant No. 312478 to ED. The authors thank Dr Lidija Izrael-Zivkovic for her assistance in data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivanka M. Karadzic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

About this article

Cite this article

Rikalovic, M.G., Abdel-Mawgoud, A.M., Déziel, E. et al. Comparative Analysis of Rhamnolipids from Novel Environmental Isolates of Pseudomonas aeruginosa . J Surfact Deterg 16, 673–682 (2013). https://doi.org/10.1007/s11743-013-1462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1462-4

Keywords

Navigation