Skip to main content
Log in

On the Characteristic Curvature of Alkyl-Polypropylene Oxide Sulfate Extended Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The hydrophobicity of alkyl-polypropylene oxide sulfate surfactants was evaluated via their characteristic curvature (Cc) using the hydrophilic-lipophilic difference (HLD) framework. A close examination of the relationship between the molecular structure of the surfactants considered (structure of the alkyl group and the number of propylene oxide groups in each surfactant) and their Cc led to a group contribution model that, for the first time, takes into consideration the geometry of the alkyl tail group. Based on this group contribution model, branching at the C2 (beta-carbon) position of the alkyl group produces the largest increase in characteristic curvature. This observation is consistent with the notion that the Cc is associated with the packing factor for anionic surfactants. Branching at the C2 position tends to produce cylindrical or inverse cone shape packing, typical of more hydrophobic (positive Cc) surfactants. This study also confirms previous observations that, different from conventional anionic surfactants, the phase behavior of alkyl polypropylene oxide sulfates is less sensitive to electrolyte concentration and that these formulations turn hydrophobic with increasing temperature, akin to the behavior of nonionic surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watcharasing S, Kongkowit W, Chavadej S (2009) Motor oil removal from water by continuous froth flotation using extended surfactant: effects of air bubble parameters and surfactant concentration. Sep Purif Technol 70:179–189

    Article  CAS  Google Scholar 

  2. Kaewpukpa R, Chavadej S, Scamehorn JF (2008) Oily soil detergency under microemulsion conditions: effects of oil loading and surfactant adsorption. Adv Mater Res 55–57:929–932

    Article  Google Scholar 

  3. Witthayapanyanon A, Acosta EJ, Harwell JH, Sabatini DA (2006) Formulation of ultralow interfacial tension systems using extended surfactants. J Surf Deterg 9:331–339

    Article  CAS  Google Scholar 

  4. Childs J, Acosta E, Scamehorn JF, Sabatini DA (2005) Surfactant-enhanced treatment of oil-based drill cuttings. J Energy Res Technol 127:153–162

    Article  CAS  Google Scholar 

  5. Quintero L, Clark DE, Jones Th, Salager JL, Forgiarini A (2008) In situ fluid formation for cleaning oil- or synthetic-oil-based mud. US patent application 20080110618. Baker Hughes Inc., Assignee

  6. Adams WT, Schievelbein VH (1987) Surfactant flooding carbonate reservoirs. SPERE 2:619–626

    Article  CAS  Google Scholar 

  7. Maerker JM, Gale WW (1992) Surfactant flood process design for Loudon. SPERE 7:36–44

    Article  CAS  Google Scholar 

  8. Wu WJ, Vaskas A, Delshad M, Pope GA, Sepehrnoori K (1996) Design and optimization of low-cost chemical flooding. In: Proceedings SPE/DOE 35355, symposium on improved oil recovery, Tulsa, OK, 21–24 April

  9. Aoudia M, Wade WH, Weerasooriya V (1995) Optimum microemulsions formulated with propoxylated guerbet alcohol and propoxylated tridecyl alcohol sodium sulfates. J Disp Sci Technol 16:115–135

    Article  CAS  Google Scholar 

  10. Miñana-Pérez M, Graciaa A, Lachaise J, Salager JL (1995) Solubilization of polar oils in microemulsions system. Colloid Polym Sci 98:177–179

    Article  Google Scholar 

  11. Huang L, Lips A, Co CC (2004) Microemulsification of triglyceride sebum and the role of interfacial structure on bicontinuous phase behavior. Langmuir 20:3559–3563

    Article  CAS  Google Scholar 

  12. Scorzza C, Godé P, Goethals G, Martin P, Miñana-Pérez M, Salager JL, Usubillaga A, Villa P (2002) Another new family of “extended” glucidoamphiphiles. Synthesis and surfactant properties for different sugar head groups and spacer arm lengths. J Surf Deterg 5:337–343

    Article  CAS  Google Scholar 

  13. Fernández A, Scorzza C, Usubillaga A, Salager JL (2005) Synthesis of new extended surfactants containing a xylitol polar group. J Surf Deterg 8:193–198

    Article  Google Scholar 

  14. Fernández A, Scorzza C, Usubillaga A, Salager JL (2005) Synthesis of new extended surfactants containing a carboxylate or sulfate polar group. J Surf Deterg 8:187–191

    Article  Google Scholar 

  15. Phan TP, Witthayapanyanon A, Harwell JH, Sabatini DA (2010) Microemulsion-based vegetable oil detergency using an extended surfactant. J Surf Deterg 13:313–319

    Article  CAS  Google Scholar 

  16. Wittayapanyanon A, Phan TP, Heitmann TC, Harwell JH, Sabatini DA (2010) Interfacial properties of extended-surfactant-based microemulsions and related systems. J Surf Deterg 13:127–134

    Article  Google Scholar 

  17. Do L, Wittayapanyanon A, Harwell JH, Sabatini DA (2009) Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. J Surf Deterg 12:91–99

    Article  CAS  Google Scholar 

  18. Forgiarini AM, Scorzza C, Velásquez J, Vejar F, Zambrano E, Salager J-L (2010) Influence of the mixed propoxy/ethoxy spacer arrangement order and of the ionic head group nature on the adsorption and aggregation of extended surfactants. J Surf Deterg 13:451–458

    Article  CAS  Google Scholar 

  19. Velasquez J, Scorzza C, Vejar F, Forgiarini AM, Anton RE, Salager JL (2010) Effect of temperature and other variables on the optimum formulation of anionic extended surfactant-alkane-brine systems. J Surf Deterg 13:69–73

    Article  CAS  Google Scholar 

  20. Witthayapanyanon A, Harwell JH, Sabatini DA (2008) Hydrophilic-lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J Colloid Interface Sci 325:259–266

    Article  CAS  Google Scholar 

  21. Bancroft WD (1913) The theory of emulsification V. J Phys Chem 17:501–519

    Article  CAS  Google Scholar 

  22. Bancroft WD (1915) The theory of emulsification VI. J Phys Chem 19:275–309

    Article  CAS  Google Scholar 

  23. Griffin WC (1949) Classification of surface active agents by HLB. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  24. Davies JT (1957) A quantitative kinetic theory the emulsion type. I. Physical chemistry of the emulsifying agent, in gas/liquid and liquid/liquid interfaces. In: Proceedings of the second international congress on surface activity, Butterworths, London, vol 1, p 426

  25. Winsor PA (1954) Solvent properties of amphiphylic compounds. Butterworths, London

    Google Scholar 

  26. Shinoda K, Saito H (1968) The Effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water cyclohexane, and nonionic surfactant. J Colloid Interface Sci 26:70–74

    Article  CAS  Google Scholar 

  27. Shinoda K, Arai H (1964) The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. J Phys Chem 68:3485–3490

    Article  CAS  Google Scholar 

  28. Kabalnov A, Wennerström H (1996) Microemulsion stability: the oriented wedge theory revisited. Langmuir 12:276–292

    Article  CAS  Google Scholar 

  29. Roger K, Cabane B, Olsson U (2010) Formation of 10–100 nm size-controlled emulsions through a sub-PIT cycle. Langmuir 26:3860–3867

    Article  CAS  Google Scholar 

  30. Davis HT (1994) Factors determining emulsion type: hydrophile-lipophile balance and beyond. Colloids Surf A 91(C):9–24

    Article  CAS  Google Scholar 

  31. Bourrel M, Salager JL, Schechter RS, Wade WH (1980) A correlation for phase behavior of nonionic surfactants. J Colloid Interface Sci 75:451–461

    Article  CAS  Google Scholar 

  32. Salager JL, Morgan JC, Schechter RS, Wade WH, Vasquez E (1979) Optimum formulation of surfactant/water/oil systems for minimum interfacial tension or phase behavior. Soc Pet Eng AIME J 19:107–115

    Google Scholar 

  33. Salager JL, Marquez N, Graciaa A, Lachaise J (2000) Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems: influence of temperature and relation between partitioning coefficient and physical chemical formulation. Langmuir 16:5534–5539

    Article  CAS  Google Scholar 

  34. Acosta EJ, JSh Yuan, Bhakta A (2008) The characteristic curvature of ionic surfactants. J Surf Deterg 11:145–158

    Article  CAS  Google Scholar 

  35. Salager JL (1996) Quantifying the concept of physico-chemical formulation in surfactant-oil-water systems-state of the art. Prog Colloid Polym Sci 100:137–142

    Article  CAS  Google Scholar 

  36. Israelachvili JN (1987) Physical principles of surfactant self-association into micelles, bilayers, vesicles and microemulsion droplets. In: Mittal KL (ed) Surfactants in solution: recent developments, vol 4. Plenum, New York, pp 3–34

    Google Scholar 

  37. Kunz W, Testard F, Zemb T (2009) Correspondence between curvature, packing, and hydrophilic-lipophilic deviation scales around the phase inversion temperature. Langmuir 25:112–115

    Article  CAS  Google Scholar 

  38. Acosta E, Szekeres E, Sabatini DA, Harwell JH (2003) Net average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir 19:186–195

    Article  CAS  Google Scholar 

  39. Acosta EJ, Bhakta AS (2009) The HLD-NAC model for mixtures of ionic and nonionic surfactants. J Surf Deterg 12:7–19

    Article  CAS  Google Scholar 

  40. Kiran SK, Acosta EJ (2010) Predicting the morphology and viscosity of microemulsions using the HLD-NAC model. Ind Eng Chem Res 49:3424–3432

    Article  CAS  Google Scholar 

  41. Acosta EJ, Szekeres E, Harwell JH, Grady BP, Sabatini DA (2009) Morphology of ionic microemulsions: comparison of SANS studies and the net-average curvature (NAC) model. Soft Matter 5:551–561

    Article  CAS  Google Scholar 

  42. Salager JL (1999) Ionic microemulsions. In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology. Marcel Dekker, New York, pp 247–280

    Google Scholar 

  43. Salager JL, Anton R, Anderez J, Aubry JM (2001) Formulation des microémulsions par la méthode HLD. Techniques de l’Ingenieur, Génie des Procédés J2 157:1

  44. Phan TT, Harwell JH, Sabatini DA (2010) Effects of triglyceride molecular structure on optimum formulation of surfactant-oil-water systems. J Surf Deterg 13:189–194

    Article  CAS  Google Scholar 

  45. Nace VM (ed) (1996) Surfactant science series vol 60, “Nonionic surfactants polyoxyalkylene block copolymers. Marcel Dekker, New York

    Google Scholar 

  46. Schlossman M, Tikhonov AM (2008) Molecular ordering and phase behavior of surfactants at water-oil interfaces as probed by X-ray surface scattering. Annual Rev Phys Chem 59:153–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Geoff Russell for sulfating the materials, Nomihla Valashiya-Mdleleni for assistance with the phase boundary studies and Herbert Perkins and Nunzio Andriollo for analytical data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles E. Hammond or Edgar J. Acosta.

About this article

Cite this article

Hammond, C.E., Acosta, E.J. On the Characteristic Curvature of Alkyl-Polypropylene Oxide Sulfate Extended Surfactants. J Surfact Deterg 15, 157–165 (2012). https://doi.org/10.1007/s11743-011-1303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-011-1303-2

Keywords

Navigation