Skip to main content
Log in

Optimized state estimation by application of machine learning

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The requirements concerning the technical availability as part of the overall equipment effectiveness increase constantly in production nowadays. Unplanned downtimes have to be prevented via efficient methods. Predictive, condition-based maintenance represents a valuable approach for fulfilling these demands, but precise models for state estimation are missing. From the manufacturers’ point of view the challenge consists in wear models with the capability of specifying the correct component’s state as well as providing reliable failure forecasts. Unfortunately, nowadays creation of wear models is based on specific stress tests or design of experiments from the manufacturer. The integration of the production phase or even data feedback and user knowledge does not take place. New potential is promised by cross-cutting technologies from ICT like cloud technologies—in general virtual platform concepts—or approaches of machine learning as enabling technologies. The objective of this paper is to adopt existing algorithms to the new application of condition monitoring in order to evaluate the applicability for automated training of robust wear models. In that context the most commonly used algorithms are described and the reader gets an impression what challenges have to be met when dealing with machine learning. A selection of about ten algorithms with 45 variants is evaluated for four different features within a packaging machine. In the outlook the embedding of the trained model in a cloud architecture is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qu S, Jian R, Chu T et al. (2014) Computional reasoning and learning for smart manufacturing under realistic conditions. Int Conf Behav Econ Soc Comput (BESC) 1–8. doi:10.1109/BESC.2014.7059529

  2. Ge Z, Zhong S, Zhang Y (2016) Semisupervised kernel learning for FDA model and its application for fault classification in industrial processes. IEEE Trans Ind Inf 12(4):1403–1411. doi:10.1109/TII.2016.2571680

    Article  Google Scholar 

  3. Beyca OF, Rao PK, Kong Z et al (2016) Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric bayesian clustering and evidence theory. IEEE Trans Automat Sci Eng 13(2):1033–1044. doi:10.1109/TASE.2015.2447454

    Article  Google Scholar 

  4. Oneto L, Orlandi I, Anguita D (2015) Performance assessment and uncertainty quantification of predictive models for smart manufacturing systems. 2015 IEEE International Conference on Big Data (Big Data), pp 1436–1445. doi:10.1109/BigData.2015.7363904

  5. Choudhary AK, Harding JA, Tiwari MK (2009) Data mining in manufacturing: a review based on the kind of knowledge. J Intell Manuf 20(5):501–521. doi:10.1007/s10845-008-0145-x

    Article  Google Scholar 

  6. Wang K (2007) Applying data mining to manufacturing: the nature and implications. J Intell Manuf 18(4):487–495. doi:10.1007/s10845-007-0053-5

    Article  Google Scholar 

  7. Sipos R, Fradkin D, Moerchen F et al. (2014) Log-based predictive maintenance. In: KDD ‘14 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1867–1876. doi:10.1145/2623330.2623340

  8. Han J, Chi S (2016) Consideration of manufacturing data to apply machine learning methods for predictive manufacturing. 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp 109–113. doi:10.1109/ICUFN.2016.7536995

  9. Zurita D, Carino JA, Picot A et al. (2015) Diagnosis method based on topology codification and neural network applied to an industrial camshaft. 2015 IEEE 10th International Symposium onSymposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp 124–130. doi:10.1109/DEMPED.2015.7303679

  10. Uhlmann E, Laghmouchi A, Hohwieler E et al (2015) Condition monitoring in the cloud. Procedia CIRP 38:53–57. doi:10.1016/j.procir.2015.08.075

    Article  Google Scholar 

  11. Neuzil J, Kreibich O, Smid R (2014) A distributed fault detection system based on IWSN for machine condition monitoring. IEEE Trans Ind Inf 10(2):1118–1123. doi:10.1109/TII.2013.2290432

    Article  Google Scholar 

  12. He K, Xu Q, Jia M (2015) Modeling and predicting surface roughness in hard turning using a bayesian inference-based HMM-SVM model. IEEE Trans Automat Sci Eng 12(3):1092–1103. doi:10.1109/TASE.2014.2369478

    Article  Google Scholar 

  13. Feng Ding, Zhengjia He, Yanyang Zi et al (2008) Application of support vector machine for equipment reliability forecasting. 2008 6th IEEE International Conference on Industrial Informatics, pp 526–530. doi:10.1109/INDIN.2008.4618157

  14. Madhusudana CK, Kumar H, Narendranath S (2016) Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal. Eng Sci Technol Int J. doi:10.1016/j.jestch.2016.05.009

    Google Scholar 

  15. Keskes H, Braham A (2015) Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis. IEEE Trans Ind Inf 11(5):1059–1066. doi:10.1109/TII.2015.2462315

    Article  Google Scholar 

  16. Jiang W, Zhang Z, Li F et al (2016) Joint label consistent dictionary learning and adaptive label prediction for semisupervised machine fault classification. IEEE Trans Ind Inf 12(1):248–256. doi:10.1109/TII.2015.2496272

    Article  Google Scholar 

  17. Tang P, Chow TWS (2016) Wireless sensor-networks conditions monitoring and fault diagnosis using neighborhood hidden conditional random field. IEEE Trans Ind Inf 12(3):933–940. doi:10.1109/TII.2016.2537758

    Article  Google Scholar 

  18. Li W, Zhang S, Rakheja S (2016) Feature denoising and nearest–farthest distance preserving projection for machine fault diagnosis. IEEE Trans Ind Inf 12(1):393–404. doi:10.1109/TII.2015.2475219

    Article  Google Scholar 

  19. Zhao C, Li J, Huang N (2016) Efficient algorithms for analysis and improvement of flexible manufacturing systems. IEEE Trans Automat Sci Eng 13(1):105–121. doi:10.1109/TASE.2015.2434054

    Article  Google Scholar 

  20. Adly F, Alhussein O, Yoo PD et al (2015) Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps. IEEE Trans Ind Inf 11(6):1267–1276. doi:10.1109/TII.2015.2481719

    Article  Google Scholar 

  21. Al-Habaibeh A, Gindy N (2001) Self-learning algorithm for automated design of condition monitoring systems for milling operations. Int J Adv Manuf Technol 18(6):448–459. doi:10.1007/s001700170054

    Article  Google Scholar 

  22. Scholz-Reiter B, Heger J, Hildebrandt T (2010) Gaussian Processes for Dispatching Rule Selection in Production Scheduling: Comparison of Learning Techniques. 2010 IEEE International Conference on Data Mining Workshops (ICDMW), pp 631–638. doi:10.1109/ICDMW.2010.19

  23. Teti R, Jemielniak K, O’Donnell G et al (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739. doi:10.1016/j.cirp.2010.05.010

    Article  Google Scholar 

  24. Carino JA, Zurita D, Picot A et al (2015) Novelty detection methodology based on multi-modal one-class support vector machine: 1–4 Sept. 2015, Guarda, Portugal. 2015 IEEE 10th International Symposium onSymposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp 184–190. doi:10.1109/DEMPED.2015.7303688

  25. Brecher C, Weck M (2006) Werkzeugmaschinen 3, 6th edn. Springer, Berlin

    Google Scholar 

  26. Brecher C (ed) (2010) ZuPack: Zustandsorientierte Instandhaltung von Verpackungsmaschinen. Verfügbarkeit von Produktionssystemen als Dienstleistung. Apprimus-Verlag, Aachen

    Google Scholar 

  27. Wu X, Kumar V (2009) The top ten algorithms in data mining. Chapman & Hall/CRC data mining and knowledge discovery series. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for the support of the depicted research within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Obdenbusch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brecher, C., Obdenbusch, M. & Buchsbaum, M. Optimized state estimation by application of machine learning. Prod. Eng. Res. Devel. 11, 133–143 (2017). https://doi.org/10.1007/s11740-017-0724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0724-9

Keywords

Navigation