Skip to main content
Log in

Evaluating the substitution risk of production systems in volatile environments

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Today’s manufacturing companies are confronted with key challenges such as an increasing individualization and shorter product life cycles. Production systems are to be made resistant to substitutions in order to secure sustainable competitive advantages in such a volatile market environment. A production system runs at risk of being substituted if an alternative production system exists, which is at least equivalent in terms of economic, ecologic, social, and technological criteria with respect to current as well as possible future product programs. The research presented in this paper provides a systematic approach to assess the substitution risk of production systems regarding a current as well as possible future product programs. It comprises a methodology, which allows for a static and dynamic evaluation of production systems based on analytical cost models, scenario creation and real options analysis. By implementing a Monte Carlo simulation, various probability distributions of system parameters can be taken into account. The presented methodology focusses on economic and ecologic aspects. Finally, the methodology is applied to a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abele E, Liebeck T, Wörn A (2006) Measuring flexibility in investment decisions for manufacturing systems. CIRP Ann Manuf Technol 55(1):433–436. doi:10.1016/S0007-8506(07)60452-1

    Article  Google Scholar 

  2. Koren Y, Heisel U, Jovane F, Morwaki T, Pritschow G, Ulsoy G, Van Brussel H (1999) Reconfigurable manufacturing systems. CIRP Ann Manuf Technol 48(2):527–540. doi:10.1016/S0007-8506(07)63232-6

    Article  Google Scholar 

  3. Westkämper E (2007) Digital manufacturing in the global era. In: Cunha PF (ed) Digital enterprise technology: perspectives and future challenges. Springer, New York, pp 3–14

    Chapter  Google Scholar 

  4. Klocke F, Trommer G (2001) Methodology for the generation and assessment of alternative manufacturing sequences in early phases of product development. Prod Eng 8(1):99–102

    Google Scholar 

  5. Gole W, Hilger PJ (2009) Due diligence. An M&A value creation approach. Wiley, Hoboken

    Google Scholar 

  6. Gregoriou G, Renneboog L (2007) Corporate governance and regulatory impact on mergers and acquisition. Research and analysis on activity Worldwide since 1990. Elsevier, Burlington

  7. Milberg J, Möller N (2008) Valuation of changeable production systems. Prod Eng Res Dev 2(4):417–424. doi:10.1007/s11740-008-0133-1

    Article  Google Scholar 

  8. Maier-Speredelozzi V, Koren Y, Hu SJ (2003) Convertibility measures for manufacturing systems. CIRP Ann Manuf Technol 52(1):367–370. doi:10.1016/S0007-8506(07)60603-9

    Article  Google Scholar 

  9. Ceryan O, Koren Y (2009) Manufacturing capacity planning strategies. CIRP Ann Manuf Technol 58(1):403–406. doi:10.1016/j.cirp.2009.03.034

    Article  Google Scholar 

  10. Ko J, Hu SJ, Huang T (2005) Reusability assessment for manufacturing systems. CIRP Ann Manuf Technol 54(1):113–116. doi:10.1016/S0007-8506(07)60062-6

    Article  Google Scholar 

  11. Lanza G, Sauer A (2012) Simulation of personnel requirements during production ramp-up. Prod Eng Res Dev 6(4/5):395–402. doi:10.1007/s11740-012-0394-6

    Article  Google Scholar 

  12. VDI Verein Deutscher Ingenieure (1990) Wirtschaftliche Grundlagen für den Konstrukteur (2234). Accessed 8 2012

  13. Buchholz SH (2014) Bewertung des Substitutionsrisikos von Fertigungssystemen. Dissertation, RWTH Aachen University

  14. Müller S (2007) Methodik für die entwicklungs-und planungsbegleitende Generierung und Bewertung von Produktionsalternativen. Dissertation, Universität München

  15. Klocke F (2011) Manufacturing processes 1. Cutting. Springer, Berlin

    Book  Google Scholar 

  16. Gassmann O (2006) Innovation und Risiko: zwei Seiten einer Medaille. In: Gassmann O, Kobe C (eds) Management von innovation und Risiko. Springer, Berlin, pp 3–27

    Chapter  Google Scholar 

  17. Gausemeier J, Fink A, Schlake O (1998) Scenario management—an approach to develop future potentials. Technol Forecast Soc Change 59(2):111–130. doi:10.1016/S0040-1625(97)00166-2

    Article  Google Scholar 

  18. Schuh G, Schultze W, Schiffer M, Rieger A, Rudolf S, Lehbrink H (2014) Scenario-based determination of product feature uncertainties for robust product architectures. Prod Eng Res Dev 8(3):383–395. doi:10.1007/s11740-014-0532-4

    Article  Google Scholar 

  19. Nau B (2012) Anlauforientierte Technologieplanung zur Auswahl von Fertigungstechnologien. Dissertation, RWTH Aachen University

  20. Schindler S (2014) Strategische Planung von Technologieketten für die Produktion. Dissertation, RWTH Aachen University

  21. Menck N, Weidig C, Aurich JC (2014) Approach for predicting production scenarios focused on cross impact analysis. Variety management in manufacturing. In: Proceedings of the 47th CIRP Conference on Manufacturing Systems, pp 493–498

  22. Sesterhenn M (2003) Bewertungssystematik zur Gestaltung struktur-und betriebsvariabler Produktionssysteme. Dissertation, RWTH Aachen University

  23. Ernst D, Schneider S, Thielen B (2012) Unternehmensbewertungen erstellen und verstehen: Ein Praxisleitfaden, 5th edn. Vahlen, München

    Google Scholar 

  24. Lanza G, Peter K, Rühl J, Peters S (2010) Assessment of flexible quantities and product variants in production. CIRP J Manuf Sci Technol 3(4):279–284. doi:10.1016/j.cirpj.2011.01.002

    Article  Google Scholar 

  25. Mun J (2006) Real options analysis. Tools and techniques for valuing strategic investments and decisions, 2nd edn. Wiley, Hoboken

    Google Scholar 

  26. Peters S (2013) Markoffsche Entscheidungsprozesse zur Kapazitäts- und Investitionsplanung von Produktionssystemen. Dissertation, Karlsruher Institut für Technologie

  27. Lanza G, Peters S (2012) Integrated capacity planning over highly volatile horizons. CIRP Ann Manuf Technol 61(1):395–398. doi:10.1016/j.cirp.2012.03.057

    Article  Google Scholar 

  28. Eversheim W, Terhaag O (1999) Prozessanalyse und–optimierung. In: Schuh G (ed) Change-Management. Von der Strategie zur Umsetzung, 2nd edn. Shaker, Aachen, pp 108–126

    Google Scholar 

  29. Amico M, Asl F, Pasek Z, Perrone G (2006) Real Options: an application to RMS investment evaluation. In: Dashchenko AI (ed) Reconfigurable manufacturing systems and transformable factories. Springer, Berlin, pp 675–693

    Chapter  Google Scholar 

  30. Möller N (2008) Bestimmung der Wirtschaftlichkeit wandlungsfähiger Produktionssysteme. Dissertation, Technische Universität München

  31. Sheskin DJ (2004) Handbook of parametric and nonparametric statistical procedures, 3rd edn. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  32. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications: a state-of-the-art survey. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Reinhardt S (2013) Bewertung der Ressourceneffizienz in der Fertigung. Dissertation, Universität München

  34. Saaty RW (1987) The analytic hierarchy process—what it is and how it is used. Math Model 9(3–5):161–176. doi:10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  35. Heinzel C, Wagner A (2013) Fine finishing of gears with high shape accuracy. CIRP Ann Manuf Technol 62(1):359–362. doi:10.1016/j.cirp.2013.03.070

    Article  Google Scholar 

  36. Tönshoff HK, Friemuth T, Marzanell C (2000) Properties of honed gears during lifetime. CIRP Ann Manuf Technol 49(1):431–434. doi:10.1016/S0007-8506(07)62982-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation DFG for the support of the depicted research within “Graduiertenkolleg-Anlaufmanagement 1491” and the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Stauder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stauder, J., Buchholz, S., Mattfeld, P. et al. Evaluating the substitution risk of production systems in volatile environments. Prod. Eng. Res. Devel. 10, 305–318 (2016). https://doi.org/10.1007/s11740-016-0670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0670-y

Keywords

Navigation