Skip to main content
Log in

Identification of thermal effects on the diameter deviation of inhomogeneous aluminum metal matrix composite workpieces when dry turning

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The use of dry cutting is associated with considerable thermal loads on the machine tool, the tool and the workpiece because of the missing heat convection through the cutting fluid. These thermal loads cause thermal expansions of the components. The accuracy of machining is thus decreased. In recent years, particularly the thermal expansions of the workpiece and the tool attained significance due to the increased demands on the machining accuracy. Aluminum metal matrix composites (Al-MMCs) show a poor machinability due to the reinforcement of light metal alloys via hard and abrasive materials. Dry turning of such composites is therefore accompanied with high thermal workpiece and tool loads. In this paper, finite element models of the workpiece and the tool are used in order to calculate the temperature distribution and thus the thermally induced expansion of the workpiece and the tool when turning AL-MMC regarding the cutting condition used. The removal of material and the heat flow to the environment are considered. The required boundary conditions (e.g. the heat flow into the workpiece) for the simulations were determined using experimental results. A new evaluation method of experimental diameter measurement validates the numerically calculated diameter deviations and reveals a considerable effect of the thermal expansions of the workpiece and the tool on the accuracy of machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aurich JC, Zimmermann M, Schindler S, Steinmann P (2014) Analysis of the machining accuracy when dry turning via experiments and finite element simulations. Prod Eng Res Dev 8(1–2):41–50

    Article  Google Scholar 

  2. Bhushan R, Kumar S, Das S (2010) Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. Int J Adv Manuf Technol 50(5–8):459–469

    Article  Google Scholar 

  3. Bian R, He N, Li L, Zhan Z, Wu Q, Shi Z (2013) Precision milling of high fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol 71(1–4):411–419

    Google Scholar 

  4. Biermann D, Iovkov I (2013) Modeling and simulation of heat input in deep-hole drilling with twist drills and MQL. Procedia CIRP 8:87–92

    Article  Google Scholar 

  5. Jianliang G, Rongdi H (2005) A united model of diametral error in slender bar turning with a follower rest. Int J Mach Tool Manuf 46:1002–1012

    Article  Google Scholar 

  6. Joliet R, Byfut A, Surmann T, Schröder A (2013) Validation of a heat input model for the prediction of thermomechanical deformations during NC milling. Procedia CIRP 8(4):403–408

    Article  Google Scholar 

  7. Klocke F, Lung D, Puls H (2013) FEM-modelling of the thermal workpiece deformation in dry turning. Procedia CIRP 8:239–244

    Google Scholar 

  8. Loehe J, Zaeh M (2014) A new approach to build a heat flux model of milling processes. Procedia CIRP 24:7–12

    Article  Google Scholar 

  9. Macherauch E, Müller P (1961) Das \(\sin ^2\psi\)-Verfahren der röntgenographischen Spannungsmessung. Z Angew Phys 13(7):305–312

    Google Scholar 

  10. Moriwaki T, Horiuchi A, Okuda K (1990) Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Ann Manuf Technol 39(1):81–84

    Article  Google Scholar 

  11. Muguthu J, Dong G (2013) Profile fractal dimension and dimensional accuracy analysis in machining metal matrix composites (MMCs). Mater Manuf Process 28(10):1102–1109

    Article  Google Scholar 

  12. Niederwestberg D, Denkena B (2014) Simulation of thermal and mechanical workpiece load. CIRP J Manuf Sci Technol 7(4):315–323

    Article  Google Scholar 

  13. Pabst R (2008) Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung. Dissertation. Dissertation, University of Karlsruhe

  14. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools a review part I: geometric, cutting-force induced and fixture-dependent errors. Int J Adv Manuf Technol 40(9):1235–1256

    Google Scholar 

  15. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools a review part II: thermal errors. Int J Adv Manuf Technol 40(9):1257–1284

    Google Scholar 

  16. Sahin Y (2005) The effects of various multilayer ceramic coatings on the wear of carbide cutting tools when machining metal matrix composites. Surf Coat Technol 199(1):112–117

    Article  MathSciNet  Google Scholar 

  17. Schindler S, Zimmermann M, Aurich JC, Steinmann P (2014) Finite element model to calculate the thermal expansions of the tool and the workpiece in dry turning. Procedia CIRP 14:535–540

    Article  Google Scholar 

  18. Schindler S, Zimmermann M, Aurich JC, Steinmann P (2014) Thermo-elastic deformations of the workpiece when dry turning aluminum alloys - a finite element model to predict thermal effects in the workpiece. CIRP J Manuf Sci Technol 7(3):233–245

    Article  Google Scholar 

  19. Sölter J, Gulpak M (2012) Heat partitioning in dry milling of steel. CIRP Ann Manuf Technol 61(1):87–90

    Article  Google Scholar 

  20. Stephenson D, Barone M, Dargush G (1995) Thermal expansion of the workpiece in turning. Trans ASME, J Eng Ind 117(4):1102–1109

    Article  Google Scholar 

  21. Sukaylo V, Kaldos A, Pieper H, Bana V, Sobczyk M (2005) Numerical simulation of thermally induced workpiece deformation in turning when using various cutting fluid applications. J Mater Process Technol 167(2–3):408–414

    Article  Google Scholar 

  22. Tomac N, Tannessen K, Rasch F (1992) Machinability of particulate aluminium matrix composites. CIRP Ann Manuf Technol 41(1):55–58

    Article  Google Scholar 

  23. Zhou J, Anderson M, Stahl J (2004) Identification of cutting errors in precision hard turning process. J Mater Process Technol 153–154:746–750

    Article  Google Scholar 

  24. Zhou L, Wang Y, Ma Z, Yu X (2014) Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites. Int J Mach Tool Manuf 84:9–16

    Article  Google Scholar 

  25. Zimmermann M, Schindler S, Steinmann P, Aurich JC (2014) Drehen metallischer Verbundwerkstoffe—Einfluss von Prozessparametern und Verstärkungsphase auf die Fertigungsgenauigkeit. wt Werkstattstechnik online 104(1–2):33–39

Download references

Acknowledgments

The authors would like to thank the German research foundation (DFG) for funding the project "Thermal effects when turning Al-MMC - experiments and simulations" AU 185/26, STE 544/42 within the priority program SPP 1480 and the state research focus advanced materials engineering (AME) at the university of Kaiserslautern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schindler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, S., Zimmermann, M., Aurich, J.C. et al. Identification of thermal effects on the diameter deviation of inhomogeneous aluminum metal matrix composite workpieces when dry turning. Prod. Eng. Res. Devel. 9, 473–485 (2015). https://doi.org/10.1007/s11740-015-0629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0629-4

Keywords

Navigation